251 research outputs found

    Performance analysis of cooperative relay networks in presence of interference

    Full text link
    In the past decade, cooperative communication has emerged as an attractive technique for overcoming the shortcomings of point-to-point wireless communications systems. Cooperative relaying improves the performance of wireless networks by forming an array of multiple independent virtual sources transmitting the same information as the source node. In addition, when relays are deployed near the edge of the network, they can provide additional coverage in network dead spots. Interference in the network can also be reduced in cooperative communications systems as the nodes can transmit at lower power levels compared to equivalent point-to-point communications systems. Optimum design of a cooperative network requires an accurate understanding of all factors affecting performance. In order to parameterize the performance of cooperative systems, this thesis introduces mathematical models for different performance metrics, such as symbol error probability, outage probability and random coding error exponent, in order to analytically estimate network capacity. A dual-hop network is introduced as the most basic type of relay network. Random coding error exponent results have been obtained using this simple network model are presented along with corresponding channel capacity estimates based on the assumption of Gaussian input codes. Next, a general multihop network error and outage performance model are developed. Detailed mathematical and statistical models for interference relay networks are presented. The basic statistical parameters, cumulative distribution function and probability density function for interference cooperative dual hop relay networks are derived and explored. A partial formulation for the random coding error exponent (RCEE) result is also presented. Simulation results over Rayleigh and Nakagami-m fading channel models are included in each chapter for all of the selected performance metrics in order to validate the theoretical analysis, under the assumption that channels are flat over the duration of one symbol transmission. These results are in close agreement with the predictions of the analytical models.University of Technology, Sydney. Faculty of Engineering and Information Technology

    Performance Analysis of Two-Hop Cooperative MIMO transmission with Relay Selection in Rayleigh Fading Channel

    Full text link
    Wireless relaying is one of the promising solutions to overcome the channel impairments and provide high data rate coverage that appears for beyond 3G mobile communications. In this paper we present an end to end BER performance analysis of dual hop wireless communication systems equipped with multiple decode and forward relays over the Rayleigh fading channel with relay selection. We select the best relay based on end to end channel conditions. We apply orthogonal space time block coding (OSTBC) at source, and also present how the multiple antennas at the source terminal affects the end to end BER performance. This intermediate relay technique will cover long distance where destination is out of reach from source.Comment: 5 figures, 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008. WiCOM '0

    Jointly Optimal Channel and Power Assignment for Dual-Hop Multi-channel Multi-user Relaying

    Full text link
    We consider the problem of jointly optimizing channel pairing, channel-user assignment, and power allocation, to maximize the weighted sum-rate, in a single-relay cooperative system with multiple channels and multiple users. Common relaying strategies are considered, and transmission power constraints are imposed on both individual transmitters and the aggregate over all transmitters. The joint optimization problem naturally leads to a mixed-integer program. Despite the general expectation that such problems are intractable, we construct an efficient algorithm to find an optimal solution, which incurs computational complexity that is polynomial in the number of channels and the number of users. We further demonstrate through numerical experiments that the jointly optimal solution can significantly improve system performance over its suboptimal alternatives.Comment: This is the full version of a paper to appear in the IEEE Journal on Selected Areas in Communications, Special Issue on Cooperative Networking - Challenges and Applications (Part II), October 201

    Multiple UAVs as relays : multi-hop single link versus multiple dual-hop links

    Get PDF
    Unmanned aerial vehicles (UAVs) have found many important applications in communications. They can serve as either aerial base stations or mobile relays to improve the quality of services. In this paper, we study the use of multiple UAVs in relaying. Considering two typical uses of multiple UAVs as relays that form either a single multi-hop link or multiple dual-hop links, we first optimize the placement the UAVs by maximizing the end-to-end signal-to-noise ratio for three useful channel models and two common relaying protocols. Based on the optimum placement, the two relaying setups are then compared in terms of outage and bit error rate. Numerical results show that the dual-hop multi-link option better than the multi-hop single link option when the air-to-ground path loss parameters depend on the UAV positions. Otherwise, the dual-hop option is only better when the source-to-destination distance small. Also, decode-and-forward UAVs provide better performances than amplify-and-forward UAVs. The investigation also reveals the effects of important system parameters on the optimum UAV positions and the relaying performances to provide useful design guidelines
    • …
    corecore