120 research outputs found

    Impact of Pointing Errors on the Performance of Mixed RF/FSO Dual-Hop Transmission Systems

    Full text link
    In this work, the performance analysis of a dual-hop relay transmission system composed of asymmetric radio-frequency (RF)/free-space optical (FSO) links with pointing errors is presented. More specifically, we build on the system model presented in [1] to derive new exact closed-form expressions for the cumulative distribution function, probability density function, moment generating function, and moments of the end-to-end signal-to-noise ratio in terms of the Meijer's G function. We then capitalize on these results to offer new exact closed-form expressions for the higher-order amount of fading, average error rate for binary and M-ary modulation schemes, and the ergodic capacity, all in terms of Meijer's G functions. Our new analytical results were also verified via computer-based Monte-Carlo simulation results.Comment: 6 pages, 3 figure

    Performance of Two-Hop DS-CDMA Systems Using Amplify-and-Forward Protocol over Different Fading Channels

    Get PDF
    This study analyses the performance of directsequence code division multiple access (DS-CDMA) based on two-hop amplify-and-forward protocol over Weibull symmetric fading channels as well as Rayleigh/Rician, Rician/Rayleigh asymmetric fading phenomenas. We investigate the bit-error rate (BER) of the considered system using multiple relays by considering the effect of Weibull fading parameter and Rician K factor on the system performance. Our simulation results demonstrate the positive impacts of the value of fading parameter, Rician K factor and increasing number of relay nodes on BER performance. It is also confirmed that the Rician K factor is more effective on the system performance over Rician/Rayleigh fading channels in comparison with Rayleigh/Rician fading environment

    Unified Performance Analysis of Mixed Line of Sight RF-FSO Fixed Gain Dual-Hop Transmission Systems

    Full text link
    In this work, we carry out a unified performance analysis of a dual-hop fixed gain relay system over asymmetric links composed of both radio-frequency (RF) and unified free-space optics (FSO) under the effect of pointing errors. The RF link is modeled by the Nakagami-mm fading channel and the FSO link by the Gamma-Gamma fading channel subject to both types of detection techniques (i.e. heterodyne detection and intensity modulation with direct detection (IM/DD)). In particular, we derive new unified closed-form expressions for the cumulative distribution function, the probability density function, the moment generation function, and the moments of the end-to-end signal-to-noise ratio of these systems in terms of the Meijer's G function. Based on these formulas, we offer exact closed-form expressions for the outage probability, the higher-order amount of fading, and the average bit-error rate of a variety of binary modulations in terms of the Meijer's G function. Further, an exact closed-form expression for the end-to-end ergodic capacity for the Nakagami-mm-unified FSO relay links is derived in terms of the bivariate G function. All the given results are verified via Computer-based Monte-Carlo simulations

    Performance analysis of mixed Nakagami- m and Gamma–Gamma dual-hop FSO transmission systems

    Get PDF
    In this paper, we carry out a unified performance analysis of a dual-hop relay system over the asymmetric links composed of both radio-frequency (RF) and unified free-space optical (FSO) links under the effect of pointing errors. Both fixed and variable gain relay systems are studied. The RF link is modeled by the Nakagami-m fading channel and the FSO link by the Gamma-Gamma fading channel subject to both types of detection techniques (i.e., heterodyne detection and intensity modulation with direct detection). In particular, we derive new unified closed-form expressions for the cumulative distribution function, the probability density function, the moment generating function (MGF), and the moments of the end-to-end signal-to-noise ratio (SNR) of these systems in terms of the Meijer's G function. Based on these formulas, we offer exact closed-form expressions for the outage probability (OP), the higher order amount of fading, and the average bit error rate (BER) of a variety of binary modulations in terms of the Meijer's G function. Furthermore, an exact closed-form expression of the end-to-end ergodic capacity is derived in terms of the bivariate G function. Additionally, by using the asymptotic expansion of the Meijer's G function at the high-SNR regime, we derive new asymptotic results for the OP, the MGF, and the average BER in terms of simple elementary functions
    • …
    corecore