191 research outputs found

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    Hexa-band MIMO CPW Bow-tie Aperture Antenna Using Particle Swarm Optimization

    Get PDF
    A MIMO hexa-band Bowtie Antenna for Wi-Fi is proposed. The MIMO antenna can operate at six frequency bands: 2.4, 4.4, 6.1, 8.5, 10.25 and 12.8 GHz. The MIMO antenna consists of four loaded bowtie hexa-band antennas having the same structure. Each single antenna element is loaded with six metallic strips as well as interconnected parasitic rectangular components. The presented HFSS simulations will show that the MIMO loaded antenna can operate at six frequency bands including 2.4 GHz by obtaining the return loss results, radiation patterns, and other antenna parameters. It will be shown also that the MIMO bowtie antenna has a very low mutual coupling at all the operating frequencies for the specific loaded metallic strips width which was obtained using Particle Swarm Optimization technique

    Compact and Broadband Microstrip-Line-Fed Modified Rhombus Slot Antenna

    Get PDF
    The printed microstrip-line-fed broadband rhombus slot antenna is investigated in this paper. With the use of the offset microstrip feed line and the corner-truncated protruded ground plane, the bandwidth enhancement and the slot size reduction for the proposed slot antenna can be obtained. The experimental results demonstrate that the impedance bandwidth for 10 dB return loss reaches 5210 MHz (108.2%, 2210-7420 MHz), which is about 2.67 times of a conventional microstrip-line-fed rhombus slot antenna. This bandwidth can provide with the wireless communication services operating in wireless local area network (WLAN) and worldwide interoperability for microwave access (WiMAX) bands. Under the use of the protruded ground plane, the slot size can be reduced by about 52%. Details of simulated and measured results are presented and discussed

    Beam-Steerable Multi-Band Mm-Wave Bow-Tie Antenna Array for Mobile Terminals

    Get PDF

    A Review: Circuit Theory of Microstrip Antennas for Dual-, Multi-, and Ultra-Widebands

    Get PDF
    In this chapter, a review has been presented on dual-band, multiband, and ultra-wideband (UWB). This review has been classified according to antenna feeding and loading of antennas using slots and notch and coplanar structure. Thereafter a comparison of dual-band, multiband, and ultra-wideband antenna has been presented. The basic geometry of patch antenna has been present along with its equivalent circuit diagram. It has been observed that patch antenna geometry for ultra-wideband is difficult to achieve with normal structure. Ultra-wideband antennas are achieved with two or more techniques; mostly UWB antennas are achieved from coplaner structures

    A Triple Band Bow Tie Array Antenna Using Both-sided MIC Technology

    Get PDF
    A single-fed linearly polarized 2x2 microstrip bow tie array antenna is proposed. The feed network has microstrip line and slot line where microstrip-slot branch circuit is connected in parallel. The feed network of the array is designed using both-sided MIC Technology to overcome the impedance matching problem of conventional feed networks. The 2x2 half bow tie array antenna is also truncated with spur lines for optimization of antenna performance. The array antenna unit can be realized in very simple and compact structure, as all the antenna elements and the feeding circuit is arranged on a Teflon glass fiber substrate without requiring any external network. The design frequency of the proposed antenna is 5 to 8 GHz (CBand) and the obtained peak gain is 12.41 dBi. The resultant axial ratio indicates that linear polarization is achieved.

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    Ultra-Wideband Antenna and Design

    Get PDF

    Review of Microstrip Patch Antenna Array at 6GHz Frequency for Long Term Evolution Applications

    Get PDF
    An antenna is the interface between radio waves spreading through space and electric flows moving in metal conduits, utilized with a transmitter or collector. In transmission, a radio transmitter supplies an electric flow to the antenna's terminals, and the antenna emanates the vitality from the flow as electromagnetic waves (radio waves). A portion of the hopeful groups for 5G interchanges in the frequency of 4-8 GHz at lower range and 20-50 GHz are in upper range. It is normal that the sending of 5G would be in the right on time of 2020s. In this paper review of microstrip patch antenna array at 6 GHz frequency for long term evolution applications are studied. Microstrip patch antenna array are now very hot topic of research among various researchers
    corecore