226 research outputs found

    Control oriented modelling of an integrated attitude and vibration suppression architecture for large space structures

    Get PDF
    This thesis is divided into two parts. The main focus of the research, namely active vibration control for large flexible spacecraft, is exposed in Part I and, in parallel, the topic of machine learning techniques for modern space applications is described in Part II. In particular, this thesis aims at proposing an end-to-end general architecture for an integrated attitude-vibration control system, starting from the design of structural models to the synthesis of the control laws. To this purpose, large space structures based on realistic missions are investigated as study cases, in accordance with the tendency of increasing the size of the scientific instruments to improve their sensitivity, being the drawback an increase of its overall flexibility. An active control method is therefore investigated to guarantee satisfactory pointing and maximum deformation by avoiding classical stiffening methods. Therefore, the instrument is designed to be supported by an active deployable frame hosting an optimal minimum set of collocated smart actuators and sensors. Different spatial configurations for the placement of the distributed network of active devices are investigated, both at closed-loop and open-loop levels. Concerning closed-loop techniques, a method to optimally place the poles of the system via a Direct Velocity Feedback (DVF) controller is proposed to identify simultaneously the location and number of active devices for vibration control with an in-cascade optimization technique. Then, two general and computationally efficient open-loop placement techniques, namely Gramian and Modal Strain Energy (MSE)-based methods, are adopted as opposed to heuristic algorithms, which imply high computational costs and are generally not suitable for high-dimensional systems, to propose a placement architecture for generically shaped tridimensional space structures. Then, an integrated robust control architecture for the spacecraft is presented as composed of both an attitude control scheme and a vibration control system. To conclude the study, attitude manoeuvres are performed to excite main flexible modes and prove the efficacy of both attitude and vibration control architectures. Moreover, Part II is dedicated to address the problem of improving autonomy and self-awareness of modern spacecraft, by using machine-learning based techniques to carry out Failure Identification for large space structures and improving the pointing performance of spacecraft (both flexible satellite with sloshing models and small rigid platforms) when performing repetitive Earth Observation manoeuvres

    Control of Magnetic Continuum Robots for Endoscopy

    Get PDF
    The present thesis discusses the problem of magnetic actuation and control applied to millimetre-scale robots for endoluminal procedures. Magnetic actuation, given its remote manipulation capabilities, has the potential to overcome several limitations of current endoluminal procedures, such as the relatively large size, high sti�ness and limited dexterity of existing tools. The application of functional forces remotely facilitates the development of softer and more dexterous endoscopes, which can navigate with reduced discomfort for the patient. However, the solutions presented in literature are not always able to guarantee smooth navigation in complex and convoluted anatomical structures. This thesis aims at improving the navigational capabilities of magnetic endoluminal robots, towards achieving full autonomy. This is realized by introducing novel design, sensing and control approaches for magnetically actuated soft endoscopes and catheters. First, the application of accurate closed-loop control to a 1 Internal Permanent Magnet (IPM) endoscope was analysed. The proposed approach can guarantee better navigation capabilities, thanks to the manipulation of every mechanical Degree of Freedom (DOF) - 5 DOFs. Speci�cally, it was demonstrated that gravity can be balanced with su�cient accuracy to guarantee tip levitation. In this way contact is minimized and obstacle avoidance improved. Consequently, the overall navigation capabilities of the endoscope were enhanced for given application. To improve exploration of convoluted anatomical pathways, the design of magnetic endoscopes with multiple magnetic elements along their length was introduced. This approach to endoluminal device design can ideally allow manipulation along the full length; facilitating full shape manipulation, as compared to tip-only control. To facilitate the control of multiple magneto-mechanical DOFs along the catheters' length, a magnetic actuation method was developed based on the collaborative robotic manipulation of 2 External Permanent Magnets (EPMs). This method, compared to the state-of-the-art, facilitates large workspace and applied �eld, while guaranteeing dexterous actuation. Using this approach, it was demonstrated that it is possible to actuate up to 8 independent magnetic DOFs. In the present thesis, two di�erent applications are discussed and evaluated, namely: colonoscopy and navigational bronchoscopy. In the former, a single-IPM endoscopic approach is utilized. In this case, the anatomy is large enough to permit equipping the endoscope with a camera; allowing navigation by direct vision. Navigational bronchoscopy, on-the-other-hand, is performed in very narrow peripheral lumina, and navigation is informed via pre-operative imaging. The presented work demonstrates how the design of the magnetic catheters, informed by a pre-operative Computed Tomography (CT) scan, can mitigate the need for intra-operative imaging and, consequently, reduce radiation exposure for patients and healthcare workers. Speci�cally, an optimization routine to design the catheters is presented, with the aim of achieving follow-the-leader navigation without supervision. In both scenarios, analysis of how magnetic endoluminal devices can improve the current practice and revolutionize the future of medical diagnostics and treatment is presented and discussed

    Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study. Volume 2: Appendices

    Get PDF
    The current status of the Active Controls Technology (ACT) for the advanced subsonic transport project is investigated through analysis of the systems technical data. Control systems technologies under examination include computerized reliability analysis, pitch axis fly by wire actuator, flaperon actuation system design trade study, control law synthesis and analysis, flutter mode control and gust load alleviation analysis, and implementation of alternative ACT systems. Extensive analysis of the computer techniques involved in each system is included

    Precision navigation for aerospace applications

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2004.Vita.Includes bibliographical references (p. 162). Includes bibliographical references (p. 162).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Navigation is important in a variety of aerospace applications, and commonly uses a blend of GPS and inertial sensors. In this thesis, a navigation system is designed, developed, and tested. Several alternatives are discussed, but the ultimate design is a loosely-coupled Extended Kalman Filter using rigid body dynamics as the process with a small angle linearization of quaternions. Simulations are run using real flight data. A bench top hardware prototype is tested. Results show good performance and give a variety of insights into the design of navigation systems. Special attention is given to convergence and the validity of linearization.by Andrew K. Stimac.S.M

    Visual Navigation in Unknown Environments

    Get PDF
    Navigation in mobile robotics involves two tasks, keeping track of the robot's position and moving according to a control strategy. In addition, when no prior knowledge of the environment is available, the problem is even more difficult, as the robot has to build a map of its surroundings as it moves. These three problems ought to be solved in conjunction since they depend on each other. This thesis is about simultaneously controlling an autonomous vehicle, estimating its location and building the map of the environment. The main objective is to analyse the problem from a control theoretical perspective based on the EKF-SLAM implementation. The contribution of this thesis is the analysis of system's properties such as observability, controllability and stability, which allow us to propose an appropriate navigation scheme that produces well-behaved estimators, controllers, and consequently, the system as a whole. We present a steady state analysis of the SLAM problem, identifying the conditions that lead to partial observability. It is shown that the effects of partial observability appear even in the ideal linear Gaussian case. This indicates that linearisation alone is not the only cause of SLAM inconsistency, and that observability must be achieved as a prerequisite to tackling the effects of linearisation. Additionally, full observability is also shown to be necessary during diagonalisation of the covariance matrix, an approach often used to reduce the computational complexity of the SLAM algorithm, and which leads to full controllability as we show in this work.Focusing specifically on the case of a system with a single monocular camera, we present an observability analysis using the nullspace basis of the stripped observability matrix. The aim is to get a better understanding of the well known intuitive behaviour of this type of systems, such as the need for triangulation to features from different positions in order to get accurate relative pose estimates between vehicle and camera. Through characterisation the unobservable directions in monocular SLAM, we are able to identify the vehicle motions required to maximise the number of observable states in the system. When closing the control loop of the SLAM system, both the feedback controller and the estimator are shown to be asymptotically stable. Furthermore, we show that the tracking error does not influence the estimation performance of a fully observable system and viceversa, that control is not affected by the estimation. Because of this, a higher level motion strategy is required in order to enhance estimation, specially needed while performing SLAM with a single camera. Considering a real-time application, we propose a control strategy to optimise both the localisation of the vehicle and the feature map by computing the most appropriate control actions or movements. The actions are chosen in order to maximise an information theoretic metric. Simulations and real-time experiments are performed to demonstrate the feasibility of the proposed control strategy

    Conceptual design and evaluation of selected Space Station concepts, volume 1

    Get PDF
    Space Station configuration concepts are defined to meet the NASA Headquarters Concept Development Group (CDG) requirements. Engineering and programmatic data are produced on these concepts suitable for NASA and industry dissemination. A data base is developed for input to the CDG's evaluation of generic Space Station configurations and for use in the critique of the CDG's generic configuration evaluation process

    Study of the performance of an inertial measurement unit on board a launcher

    Get PDF
    Current predictions indicate that by 2020 the available launchers will not cover the market niche of small satellites. The Aldebaran launcher is intended to cover this market niche. Aldebaran will perform an aerial launch because the initial launcher mass is significantly reduced compared with the ground launch option. Due to the navigation requirements and the precision of the release manoeuvre, Aldebaran will need a hybrid navigation system. Aldebaran will have a strapdown navigation system on board. Gimbaled and floated systems are more precise, but they are heavier and mechanically more complicated than strapdown systems. The sensor output error sources are modelled and the user can specify which parameters are going to be corrected by the navigation algorithm and which not. The random walk is modelled with a dynamic method. The Van Allan variance methods have not been implemented because the validation of this model in some MEMS inertial sensor is still under study. The gravity model used in the navigation algorithm (truncated at the J2 zonal harmonic) is a requirement imposed. However, it has been checked that this requirement is compatible with the required performance. The sensor redundancy has been analysed. We have determined that the Aldebaran launcher will not use ISAs in a non-orthogonal configuration because the sensor output correction algorithm in this case is more complicated than in orthogonal configurations and because the detection of the failed sensor is made by probabilistic analysis. The hybridization corrects the errors of the vertical channel instability and stabilizes it. Therefore, the implementation of an altitude sensor has been discarded because the vertical channel instability problem has been solved. The model has been validated by three sets of tests. The first set validates the attitude determination, the second validates the INS standalone trajectory and finally the hybridization has been validated. The trajectory validation has been executed with real flight data. Finally, the navigation system sensitivity to some parameters has been evaluated with the model. The results show that the accelerometer parameters do not have such a strong influence as the gyroscope parameters. The reason is that, in the navigation algorithm modelled, position and velocity are corrected periodically with GNSS data but the attitude is not corrected. The model implemented in Simulink in this project is the cornerstone of a brand new navigation system model. Such model must be able of evaluating the performance of navigation systems in a wide range of conditions and sensor

    Proceedings of the NASA Conference on Space Telerobotics, volume 3

    Get PDF
    The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Study of robotics systems applications to the space station program

    Get PDF
    Applications of robotics systems to potential uses of the Space Station as an assembly facility, and secondarily as a servicing facility, are considered. A typical robotics system mission is described along with the pertinent application guidelines and Space Station environmental assumptions utilized in developing the robotic task scenarios. A functional description of a supervised dual-robot space structure construction system is given, and four key areas of robotic technology are defined, described, and assessed. Alternate technologies for implementing the more routine space technology support subsystems that will be required to support the Space Station robotic systems in assembly and servicing tasks are briefly discussed. The environmental conditions impacting on the robotic configuration design and operation are reviewed
    • …
    corecore