54 research outputs found

    A review of selected topics in physics based modeling for tunnel field-effect transistors

    Get PDF
    The research field on tunnel-FETs (TFETs) has been rapidly developing in the last ten years, driven by the quest for a new electronic switch operating at a supply voltage well below 1 V and thus delivering substantial improvements in the energy efficiency of integrated circuits. This paper reviews several aspects related to physics based modeling in TFETs, and shows how the description of these transistors implies a remarkable innovation and poses new challenges compared to conventional MOSFETs. A hierarchy of numerical models exist for TFETs covering a wide range of predictive capabilities and computational complexities. We start by reviewing seminal contributions on direct and indirect band-to-band tunneling (BTBT) modeling in semiconductors, from which most TCAD models have been actually derived. Then we move to the features and limitations of TCAD models themselves and to the discussion of what we define non-self-consistent quantum models, where BTBT is computed with rigorous quantum-mechanical models starting from frozen potential profiles and closed-boundary Schr\uf6dinger equation problems. We will then address models that solve the open-boundary Schr\uf6dinger equation problem, based either on the non-equilibrium Green's function NEGF or on the quantum-transmitting-boundary formalism, and show how the computational burden of these models may vary in a wide range depending on the Hamiltonian employed in the calculations. A specific section is devoted to TFETs based on 2D crystals and van der Waals hetero-structures. The main goal of this paper is to provide the reader with an introduction to the most important physics based models for TFETs, and with a possible guidance to the wide and rapidly developing literature in this exciting research field

    A review of selected topics in physics based modeling for tunnel field-effect transistors

    Get PDF
    The research field on tunnel-FETs (TFETs) has been rapidly developing in the last ten years, driven by the quest for a new electronic switch operating at a supply voltage well below 1 V and thus delivering substantial improvements in the energy efficiency of integrated circuits. This paper reviews several aspects related to physics based modeling in TFETs, and shows how the description of these transistors implies a remarkable innovation and poses new challenges compared to conventional MOSFETs. A hierarchy of numerical models exist for TFETs covering a wide range of predictive capabilities and computational complexities. We start by reviewing seminal contributions on direct and indirect band-to-band tunneling (BTBT) modeling in semiconductors, from which most TCAD models have been actually derived. Then we move to the features and limitations of TCAD models themselves and to the discussion of what we define non-self-consistent quantum models, where BTBT is computed with rigorous quantum-mechanical models starting from frozen potential profiles and closed-boundary Schr\uf6dinger equation problems. We will then address models that solve the open-boundary Schr\uf6dinger equation problem, based either on the non-equilibrium Green's function NEGF or on the quantum-transmitting-boundary formalism, and show how the computational burden of these models may vary in a wide range depending on the Hamiltonian employed in the calculations. A specific section is devoted to TFETs based on 2D crystals and van der Waals hetero-structures. The main goal of this paper is to provide the reader with an introduction to the most important physics based models for TFETs, and with a possible guidance to the wide and rapidly developing literature in this exciting research field

    Modeling Of Two Dimensional Graphene And Non-graphene Material Based Tunnel Field Effect Transistors For Integrated Circuit Design

    Get PDF
    The Moore’s law of scaling of metal oxide semiconductor field effect transistor (MOSFET) had been a driving force toward the unprecedented advancement in development of integrated circuit over the last five decades. As the technology scales down to 7 nm node and below following the Moore’s law, conventional MOSFETs are becoming more vulnerable to extremely high off-state leakage current exhibiting a tremendous amount of standby power dissipation. Moreover, the fundamental physical limit of MOSFET of 60 mV/decade subthreshold slope exacerbates the situation further requiring current transport mechanism other than drift and diffusion for the operation of transistors. One way to limit such unrestrained amount of power dissipation is to explore novel materials with superior thermal and electrical properties compared to traditional bulk materials. On the other hand, energy efficient steep subthreshold slope devices are the other possible alternatives to conventional MOSFET based on emerging novel materials. This dissertation addresses the potential of both advanced materials and devices for development of next generation energy efficient integrated circuits. Among the different steep subthreshold slope devices, tunnel field effect transistor (TFET) has been considered as a promising candidate after MOSFET. A superior gate control on source-channel band-to-band tunneling providing subthreshold slopes well below than 60 mV/decade. With the emergence of atomically thin two-dimensional (2D) materials, interest in the design of TFET based on such novel 2D materials has also grown significantly. Graphene being the first and the most studied among 2D materials with exotic electronic and thermal properties. This dissertation primarily considers current transport modeling of graphene based tunnel devices from transport phenomena to energy efficient integrated circuit design. Three current transport models: semi-classical, semi-quantum and numerical simulations are described for the modeling of graphene nanoribbon tunnel field effect transistor (GNR TFET) where the semi-classical model is in close agreement with the quantum transport simulation. Moreover, the models produced are also extended for integrated circuit design using Verilog-A hardware description language for logic design. In order to overcome the challenges associated with the band gap engineering for making graphene transistor for logic operation, the promise of graphene based interlayer tunneling transistors are discussed along with their existing fundamental physical limitation of subthreshold slope. It has been found that such interlayer tunnel transistor has very poor electrostatic gate control on drain current. It gives subthreshold slope greater than the thermionic limit of 60 mV/decade at room temperature. In order to resolve such limitation of interlayer tunneling transistors, a new type of transistor named “junctionless tunnel effect transistor (JTET)” has been invented and modeled for the first time considering graphene-boron nitride (BN)-graphene and molybdenum disulfide (MoS2)-boron nitride (BN) heterostructures, where the interlayer tunneling mechanism controls the source-drain ballistic transport instead of depleting carriers in the channel. Steep subthreshold slope, low power and high frequency THz operation are few of the promising features studied for such graphene and MoS2 JTETs. From current transport modeling to energy efficient integrated circuit design using Verilog-A has been carried out for these new devices as well. Thus, findings in this dissertation would suggest the exciting opportunity of a new class of next generation energy efficient material based transistors as switches

    Vertical III-V Nanowire Transistors for Low-Power Electronics

    Get PDF
    Power dissipation has been the major challenge in the downscaling of transistor technology. Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) have struggled to keep a low power consumption while still maintaining a high performance due to the low carrier mobilities of Si but also due to their inherent minimum inverse subthreshold slope (S ≥ 60 mV/dec) which is limited by thermionic emission. This thesis work studied the capabilities and limitations of III-V based vertical nanowire n-type Tunneling Field-Effect Transistor (TFET) and p-type MOSFET (PMOS). InAs/InGaAsSb/GaSb heterojunction was employed in the whole study. The main focus was to understand the influence of the device fabrication processes and the structural factors of the nanowires such as band alignment, composition and doping on the electrical performance of the TFET. Optimizations of the device processes including spacer technology improvement, Equivalent Oxide Thickness (EOT) downscaling, and gate underlap/overlap were explored utilizing structural characterizations. Systematic fine tuning of the band alignment of the tunnel junction resultedin achieving the best performing sub-40 mV/dec TFETs with S = 32 mV/decand ION = 4μA/μm for IOFF = 1 nA/μm at VDS = 0.3 V. The suitability of employing TFET for electronic applications at cryogenic temperatures has been explored utilizing experimental device data. The impact of the choice of heterostructure and dopant incorporation were investigated to identify the optimum operating temperature and voltage in different temperature regimes. A novel gate last process self-aligning the gate and drain contacts to the intrinsic and doped segments, respectively was developed for vertical InGaAsSb-GaAsSb core-shell nanowire transistors leading to the first sub-100 mV/dec PMOS with S = 75 mV/dec, significant ION/ IOFF = 104 and IMIN < 1 nA/μm at VDS = -0.5 V

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before

    Silicon on ferroelectric insulator field effect transistor (SOF-FET) a new device for the next generation ultra low power circuits

    Get PDF
    Title from PDF of title page, viewed on March 12, 2014Thesis advisor: Masud H. ChowdhuryVitaIncludes bibliographical references (pages 116-131)Thesis (M. S.)--School of Computer and Engineering. University of Missouri--Kansas City, 2013Field effect transistors (FETs) are the foundation for all electronic circuits and processors. These devices have progressed massively to touch its final steps in subnanometer level. Left and right proposals are coming to rescue this progress. Emerging nano-electronic devices (resonant tunneling devices, single-atom transistors, spin devices, Heterojunction Transistors rapid flux quantum devices, carbon nanotubes, and nanowire devices) took a vast share of current scientific research. Non-Si electronic materials like III-V heterostructure, ferroelectric, carbon nanotubes (CNTs), and other nanowire based designs are in developing stage to become the core technology of non-classical CMOS structures. FinFET present the current feasible commercial nanotechnology. The scalability and low power dissipation of this device allowed for an extension of silicon based devices. High short channel effect (SCE) immunity presents its major advantage. Multi-gate structure comes to light to improve the gate electrostatic over the channel. The new structure shows a higher performance that made it the first candidate to substitute the conventional MOSFET. The device also shows a future scalability to continue Moor’s Law. Furthermore, the device is compatible with silicon fabrication process. Moreover, the ultra-low-power (ULP) design required a subthreshold slope lower than the thermionic-emission limit of 60mV/ decade (KT/q). This value was unbreakable by the new structure (SOI-FinFET). On the other hand most of the previews proposals show the ability to go beyond this limit. However, those pre-mentioned schemes have publicized a very complicated physics, design difficulties, and process non-compatibility. The objective of this research is to discuss various emerging nano-devices proposed for ultra-low-power designs and their possibilities to replace the silicon devices as the core technology in the future integrated circuit. This thesis proposes a novel design that exploits the concept of negative capacitance. The new field effect transistor (FET) based on ferroelectric insulator named Silicon-On-Ferroelectric Insulator Field Effect Transistor (SOF-FET). This proposal is a promising methodology for future ultra-lowpower applications, because it demonstrates the ability to replace the silicon-bulk based MOSFET, and offers subthreshold swing significantly lower than 60mV/decade and reduced threshold voltage to form a conducting channel. The SOF-FET can also solve the issue of junction leakage (due to the presence of unipolar junction between the top plate of the negative capacitance and the diffused areas that form the transistor source and drain). In this device the charge hungry ferroelectric film already limits the leakage.Abstract -- List of illustrations - List of tables -- Acknowledgements -- Dedication -- Introduction -- Carbon nanotube field effect transistor -- Multi-gate transistors -FinFET -- Subthreshold swing -- Tunneling field effect transistors -- I-mos and nanowire fets -- Ferroelectric based field effect transistors -- An analytical model to approximate the subthreshold swing for soi-finfet -- Silicon-on-ferroelectric insulator field effect transistor (SOF-FET) -- Current-voltage characteristics of sof-fet -- Advantages, manufacturing process and future work of the proposed device -- Appendix -- Reference

    Miniaturized Transistors

    Get PDF
    What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications

    Silicon on Ferroelectric Insulator Field Effect Transistor (SOFFET): A Radical Alternative to Overcome the Thermionic Limit

    Get PDF
    Title from PDF of title page viewed January 3,2018Dissertation advisor: Masud H ChowdhuryVitaIncludes bibliographical references (pages 165-180)Thesis (Ph.D.)--School of Computing and Engineering and Department of Physics and Astronomy. University of Missouri--Kansas City, 2016The path of down-scaling traditional MOSFET is reaching its technological, economic and, most importantly, fundamental physical limits. Before the dead-end of the roadmap, it is imperative to conduct a broad research to find alternative materials and new architectures to the current technology for the MOSFET devices. Beyond silicon electronic materials like group III-V heterostructure, ferroelectric material, carbon nanotubes (CNTs), and other nanowire-based designs are in development to become the core technology for non-classical CMOS structures. Field effect transistors (FETs) in general have made unprecedented progress in the last few decades by down-scaling device dimensions and power supply level leading to extremely high numbers of devices in a single chip. High density integrated circuits are now facing major challenges related to power management and heat dissipation due to excessive leakage, mainly due to subthreshold conduction. Over the years, planar MOSFET dimensional reduction was the only process followed by the semiconductor industry to improve device performance and to reduce the power supply. Further scaling increases short-channel-effect (SCE), and off-state current makes it difficult for the industry to follow the well-known Moore’s Law with bulk devices. Therefore, scaling planar MOSFET is no longer considered as a feasible solution to extend this law. The down-scaling of metal-oxide-semiconductor field effect transistors (MOSFETs) leads to severe short-channel-effects and power leakage at large-scale integrated circuits (LSIs). The device, which is governed by the thermionic emission of the carriers injected from the source to the channel region, has set a limitation of the subthreshold swing (S) of 60 / at room temperature. Devices with ‘S’ below this limit is highly desirable to reduce the power consumption and maintaining a high / current ratio. Therefore, the future of semiconductor industry hangs on new architectures, new materials or even new physics to govern the flow of carriers in new switches. As the subthreshold swing is increasing at every technology node, new structures using SOI, multi-gate, nanowire approach, and new channel materials such as III–V semiconductor have not satisfied the targeted values of subthreshold swing. Moreover, the ultra-low-power (ULP) design required a subthreshold slope lower than the thermionic emission limit of 60 /. This value was unbreakable by the new structure (SOI FinFET). On the other hand, most of the preview proposals show the ability to go beyond this limit. However, those pre-mentioned schemes have publicized very complicated physics, design difficulties, and process non-compatibility. The objective of this research is to discuss various emerging nano-devices proposed for sub-60 mV/decade designs and their possibilities to replace the silicon devices as the core technology in the future integrated circuit. This dissertation also proposes a novel design that exploits the concept of negative capacitance. The new field-effect-transistor (FET) based on ferroelectric insulator named Silicon-On-Ferroelectric Insulator Field effect-transistor (SOFFET). This proposal is a promising methodology for future ultra low-power applications because it demonstrates the ability to replace the silicon-bulk based MOSFET, and offers a subthreshold swing significantly lower than 60 / and reduced threshold voltage to form a conducting channel. The proposed SOFFET design, which utilizes the negative capacitance of a ferroelectric insulator in the body-stack, is completely different from the FeFET and NCFET designs. In addition to having the NC effect, the proposed device will have all the advantages of an SOI device. Body-stack that we are intending in this research has many advantages over the gate-stack. First, it is more compatible with the existing processes. Second, the gate and the working area of the proposed SOFFET is like the planar MOSFET. Third, the complexity and ferroelectric material interferences are shifted to the body of the device from the gate and the working area. The proposed structure offers better scalability and superior constructability because of the high-dielectric buried insulator. Here we are providing a very simplified model for the structure. Silicon-on-ferroelectric leads to several advantages including low off-state current and shift in the threshold voltage with the decrease of the ferroelectric material thickness. Moreover, having an insulator in the body of the device increases the controllability over the channel, which leads to the reduction in the short-channel-effect (SCE). The proposed SOFFET offers low value of subthreshold swing (S) leading to better performance in the on-state. The off-state current is directly related to S. So, the off-state current is also minimum in the proposed structure.Introduction -- Subthreshold swing -- Multi-gate devices -- Tunneling field effect transistors -- I-mos & FET transistors -- Ferroelectric based field effect transistors -- An analytical model to approximate the subthreshold swing for SOI-FINFET -- Multichannel tunneling carbon nanotube FET -- Partially depleted silicon-on-Ferroelectric insulator FET -- Fully depleted silicon-on-ferroelectric insulator FET -- Advantages, manufacturing process, and future work of the proposed devices -- Appendix A. Estimation of the body factor (n) [eta] of SOI FinFET -- Appendix B. Solution for the Poisson Equation of MT-CNTFE

    높은 구동 전류와 낮은 문턱전압 이하 스윙을 가지는 L자 형태의 터널링 전계효과 트랜지스터

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 2. 박병국.In order to solve power crisis in highly-scaled CMOS technology, a novel tunnel field-effect transistors (TFETs), named L-shaped TFETs, have been proposed and its electrical properties are examined. It features band-to-band tunneling (BTBT) direction parallel to the normal electric field induced by gate electrode. Because carrier injection is occurred perpendicular to the channel direction, cross-sectional area and barrier width of BTBT junction could be defined by structural parameters. Using the commercial TCAD device simulator, its electrical characteristics are examined and optimized. It is expected that the L-shaped TFETs will reveal better performance than conventional ones in terms of subthreshold swing (S), on-current (Ion) and short channel effect. In addition, the performance of L-shaped TFET inverters has been compared with that of conventional TFET ones for its complementary logic application. After the key process techniques are obtained, control and comparison samples are fabricated at Inter-University Semiconductor Research Center (ISRC) of Seoul National University (SNU), Korea. The main process technique is as follow: in-situ doped epitaxial layer growth for constantly doped source region, selective epitaxial layer growth of silicon at low temperature for tunneling region, and guarantee sub-3-nm gate dielectric. From the electrical measurement of transfer and output characteristics, it is verified that 102 mV/dec minimum S in conventional TFET is improve to 7, 34 and 59 mV/dec in L-shaped TFET. In addition, the Ion of L-shaped TFET is more than 10 times larger than that of conventional one. Extracting several parameters such as source/drain resistance, channel resistance, mobility, and tunneling resistance, it is clear that the improved performance comes from the reduction of tunneling resistance. From this study, it is demonstrated that L-shaped TFET will be one of the most promising candidate for a next-generation low-power device.Abstract i Contents iii List of Tables v List of Figures vi Chapter 1 Introduction 1 1.1 NECESSITY OF ALTERNATIVES TO CMOS 1 1.2 TUNNEL FIELD-EFFECT TRANSISTORS (TFETS) 4 1.3 TECHNICAL ISSUES OF TFETS 7 1.4 SCOPE OF THESIS 10 Chapter 2 L-shaped TFET 11 2.1 FEATURES OF L-SHAPED TFET 11 2.2 DESIGN OPTIMIZATION 17 2.3 CORNER EFFECT 27 2.4 FURTHER IMPROVEMENT AND CIRCUIT APPLICATION 36 2.5 SUMMARY OF TARGET DEVICE 40 Chapter 3 Device Fabrication 42 3.1 FABRICATION OF CONTROL TFETS 42 3.2 KEY PROCESS DESIGNS FOR L-SHAPED TFETS 45 3.3 FABRICATION OF L-SHAPED TFET 51 3.4 SIDEWALL SPACER FOR MINIMIZATION OF MIS-ALIGNMENT 56 Chapter 4 Device Characteristics 59 4.1 METAL-OXIDE-SEMICONDUCTOR (MOS) CAPACITOR 59 4.2 CONTROL SAMPLES OF CONVENTIONAL PLANAR TFETS 63 4.3 L-SHAPED TFETS 71 4.4 EXTRACTION OF SEVERAL ELECTRICAL PARAMETERS 76 Chapter 5 80 Conclusions 80 Bibliography 82 Abstract in Korean 89 Curriculum Vitae 91Docto

    Phase Noise Analyses and Measurements in the Hybrid Memristor-CMOS Phase-Locked Loop Design and Devices Beyond Bulk CMOS

    Get PDF
    Phase-locked loop (PLLs) has been widely used in analog or mixed-signal integrated circuits. Since there is an increasing market for low noise and high speed devices, PLLs are being employed in communications. In this dissertation, we investigated phase noise, tuning range, jitter, and power performances in different architectures of PLL designs. More energy efficient devices such as memristor, graphene, transition metal di-chalcogenide (TMDC) materials and their respective transistors are introduced in the design phase-locked loop. Subsequently, we modeled phase noise of a CMOS phase-locked loop from the superposition of noises from its building blocks which comprises of a voltage-controlled oscillator, loop filter, frequency divider, phase-frequency detector, and the auxiliary input reference clock. Similarly, a linear time-invariant model that has additive noise sources in frequency domain is used to analyze the phase noise. The modeled phase noise results are further compared with the corresponding phase-locked loop designs in different n-well CMOS processes. With the scaling of CMOS technology and the increase of the electrical field, the problem of short channel effects (SCE) has become dominant, which causes decay in subthreshold slope (SS) and positive and negative shifts in the threshold voltages of nMOS and pMOS transistors, respectively. Various devices are proposed to continue extending Moore\u27s law and the roadmap in semiconductor industry. We employed tunnel field effect transistor owing to its better performance in terms of SS, leakage current, power consumption etc. Applying an appropriate bias voltage to the gate-source region of TFET causes the valence band to align with the conduction band and injecting the charge carriers. Similarly, under reverse bias, the two bands are misaligned and there is no injection of carriers. We implemented graphene TFET and MoS2 in PLL design and the results show improvements in phase noise, jitter, tuning range, and frequency of operation. In addition, the power consumption is greatly reduced due to the low supply voltage of tunnel field effect transistor
    corecore