378 research outputs found

    Optimized kernel minimum noise fraction transformation for hyperspectral image classification

    Get PDF
    This paper presents an optimized kernel minimum noise fraction transformation (OKMNF) for feature extraction of hyperspectral imagery. The proposed approach is based on the kernel minimum noise fraction (KMNF) transformation, which is a nonlinear dimensionality reduction method. KMNF can map the original data into a higher dimensional feature space and provide a small number of quality features for classification and some other post processing. Noise estimation is an important component in KMNF. It is often estimated based on a strong relationship between adjacent pixels. However, hyperspectral images have limited spatial resolution and usually have a large number of mixed pixels, which make the spatial information less reliable for noise estimation. It is the main reason that KMNF generally shows unstable performance in feature extraction for classification. To overcome this problem, this paper exploits the use of a more accurate noise estimation method to improve KMNF. We propose two new noise estimation methods accurately. Moreover, we also propose a framework to improve noise estimation, where both spectral and spatial de-correlation are exploited. Experimental results, conducted using a variety of hyperspectral images, indicate that the proposed OKMNF is superior to some other related dimensionality reduction methods in most cases. Compared to the conventional KMNF, the proposed OKMNF benefits significant improvements in overall classification accuracy

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Integration of Spatial and Spectral Information for Hyperspectral Image Classification

    Get PDF
    Hyperspectral imaging has become a powerful tool in biomedical and agriculture fields in the recent years and the interest amongst researchers has increased immensely. Hyperspectral imaging combines conventional imaging and spectroscopy to acquire both spatial and spectral information from an object. Consequently, a hyperspectral image data contains not only spectral information of objects, but also the spatial arrangement of objects. Information captured in neighboring locations may provide useful supplementary knowledge for analysis. Therefore, this dissertation investigates the integration of information from both the spectral and spatial domains to enhance hyperspectral image classification performance. The major impediment to the combined spatial and spectral approach is that most spatial methods were only developed for single image band. Based on the traditional singleimage based local Geary measure, this dissertation successfully proposes a Multidimensional Local Spatial Autocorrelation (MLSA) for hyperspectral image data. Based on the proposed spatial measure, this research work develops a collaborative band selection strategy that combines both the spectral separability measure (divergence) and spatial homogeneity measure (MLSA) for hyperspectral band selection task. In order to calculate the divergence more efficiently, a set of recursive equations for the calculation of divergence with an additional band is derived to overcome the computational restrictions. Moreover, this dissertation proposes a collaborative classification method which integrates the spectral distance and spatial autocorrelation during the decision-making process. Therefore, this method fully utilizes the spatial-spectral relationships inherent in the data, and thus improves the classification performance. In addition, the usefulness of the proposed band selection and classification method is evaluated with four case studies. The case studies include detection and identification of tumor on poultry carcasses, fecal on apple surface, cancer on mouse skin and crop in agricultural filed using hyperspectral imagery. Through the case studies, the performances of the proposed methods are assessed. It clearly shows the necessity and efficiency of integrating spatial information for hyperspectral image processing

    Performance Enhancement of Hyperspectral Semantic Segmentation Leveraging Ensemble Networks

    Get PDF
    Hyperspectral image (HSI) semantic segmentation is a growing field within computer vision, machine learning, and forestry. Due to the separate nature of these communities, research applying deep learning techniques to ground-type semantic segmentation needs improvement, along with working to bring the research and expectations of these three communities together. Semantic segmentation consists of classifying individual pixels within the image based on the features present. Many issues need to be resolved in HSI semantic segmentation including data preprocessing, feature reduction, semantic segmentation techniques, and adversarial training. In this thesis, we tackle these challenges by employing ensemble methods for HSI semantic segmentation. Deep neural networks (DNNs) for classification tasks have been employed in HSI semantic segmentation with great success. The ensemble method in traditional classification is often used to increase performance, but research into applying it to semantic segmentation in HSIs is relatively new. Instead of using a single network approach to classification, the ensemble method employs multiple networks to improve performance. Research into ensemble methods in HSI has seen increased accuracy, but often has higher computational complexity and relies on expensive preprocessing techniques. To showcase the performance increase the ensemble method has on semantic segmentation, we propose the novel flagship model Clustering Ensemble U-Net (CEU-Net). In CEU-Net we (1) use a bagging ensemble technique to reduce the computational complexity, (2) utilize clustering on class labels as an intelligent method of delineating which data goes to each network, thereby making each sub-network an expert on a particular cluster, and (3) implement with or without patching for better data flexibility. It is shown that CEU-Net outperforms existing hyperspectral semantic segmentation methods, achieving better performance with and without patching compared to baseline models. Semantic segmentation models are vulnerable to adversarial attacks and need adversarial training to counteract them. Adversarial attacks are often intelligent attacks that use the knowledge of a trained classifier to create imperceptible perturbations to hurt classification accuracy. Traditional approaches to adversarial robustness focus on training or retraining a single network on attacked data, however, in the presence of multiple attacks these approaches decrease the performance compared to networks trained individually on each attack. To combat adversarial attacks in HSI semantic segmentation, we propose the Adversarial Discriminator Ensemble Network (ADE-Net) which focuses on attack type detection and adversarial robustness under a unified model to preserve per data-type weight optimally while making the overall network robust. In the proposed method, a discriminator network is used to separate data by attack type into their specific attack-expert ensemble sub-network. The ensemble and discriminator networks are trained together using a unified novel loss function to share information between each network. Our approach allows for the presence of multiple attacks mixed together while also labeling attack types during testing. In this thesis, we experimentally show that ADE-Net outperforms the baseline, which is a single network adversarially trained under a mix of multiple attacks, for popular HSI datasets
    • …
    corecore