848 research outputs found

    Hybrid Beamforming With Sub-arrayed MIMO Radar: Enabling Joint Sensing and Communication at mmWave Band

    Get PDF
    In this paper, we propose a beamforming design for dual-functional radar-communication (DFRC) systems at the millimeter wave (mmWave) band, where hybrid beamforming and sub-arrayed MIMO radar techniques are jointly exploited. We assume that a base station (BS) is serving a user equipment (UE) located in a Non-Line-of-Sight (NLoS) channel, which in the meantime actively detects multiple targets located in a Line-of-Sight (LoS) channel. Given the optimal communication beamformer and the desired radar beampattern, we propose to design the analog and digital beamformers under non-convex constant-modulus (CM) and power constraints, such that the weighted summation of the communication and radar beamforming errors is minimized. The formulated optimization problem can be decomposed into three subproblems, and is solved by the alternating minimization approach. Numerical simulations verify the feasibility of the proposed beamforming design, and show that our approach offers a favorable performance tradeoff between sensing and communication.Comment: 5 pages, 2 figures, submitted to ICASSP 201

    Common Codebook Millimeter Wave Beam Design: Designing Beams for Both Sounding and Communication with Uniform Planar Arrays

    Full text link
    Fifth generation (5G) wireless networks are expected to utilize wide bandwidths available at millimeter wave (mmWave) frequencies for enhancing system throughput. However, the unfavorable channel conditions of mmWave links, e.g., higher path loss and attenuation due to atmospheric gases or water vapor, hinder reliable communications. To compensate for these severe losses, it is essential to have a multitude of antennas to generate sharp and strong beams for directional transmission. In this paper, we consider mmWave systems using uniform planar array (UPA) antennas, which effectively place more antennas on a two-dimensional grid. A hybrid beamforming setup is also considered to generate beams by combining a multitude of antennas using only a few radio frequency chains. We focus on designing a set of transmit beamformers generating beams adapted to the directional characteristics of mmWave links assuming a UPA and hybrid beamforming. We first define ideal beam patterns for UPA structures. Each beamformer is constructed to minimize the mean squared error from the corresponding ideal beam pattern. Simulation results verify that the proposed codebooks enhance beamforming reliability and data rate in mmWave systems.Comment: 14 pages, 10 figure

    Codebook Based Hybrid Precoding for Millimeter Wave Multiuser Systems

    Get PDF
    In millimeter wave (mmWave) systems, antenna architecture limitations make it difficult to apply conventional fully digital precoding techniques but call for low cost analog radio-frequency (RF) and digital baseband hybrid precoding methods. This paper investigates joint RF-baseband hybrid precoding for the downlink of multiuser multi-antenna mmWave systems with a limited number of RF chains. Two performance measures, maximizing the spectral efficiency and the energy efficiency of the system, are considered. We propose a codebook based RF precoding design and obtain the channel state information via a beam sweep procedure. Via the codebook based design, the original system is transformed into a virtual multiuser downlink system with the RF chain constraint. Consequently, we are able to simplify the complicated hybrid precoding optimization problems to joint codeword selection and precoder design (JWSPD) problems. Then, we propose efficient methods to address the JWSPD problems and jointly optimize the RF and baseband precoders under the two performance measures. Finally, extensive numerical results are provided to validate the effectiveness of the proposed hybrid precoders.Comment: 35 pages, 9 figures, to appear in Trans. on Signal Process, 201

    An Efficient Uplink Multi-Connectivity Scheme for 5G mmWave Control Plane Applications

    Full text link
    The millimeter wave (mmWave) frequencies offer the potential of orders of magnitude increases in capacity for next-generation cellular systems. However, links in mmWave networks are susceptible to blockage and may suffer from rapid variations in quality. Connectivity to multiple cells - at mmWave and/or traditional frequencies - is considered essential for robust communication. One of the challenges in supporting multi-connectivity in mmWaves is the requirement for the network to track the direction of each link in addition to its power and timing. To address this challenge, we implement a novel uplink measurement system that, with the joint help of a local coordinator operating in the legacy band, guarantees continuous monitoring of the channel propagation conditions and allows for the design of efficient control plane applications, including handover, beam tracking and initial access. We show that an uplink-based multi-connectivity approach enables less consuming, better performing, faster and more stable cell selection and scheduling decisions with respect to a traditional downlink-based standalone scheme. Moreover, we argue that the presented framework guarantees (i) efficient tracking of the user in the presence of the channel dynamics expected at mmWaves, and (ii) fast reaction to situations in which the primary propagation path is blocked or not available.Comment: Submitted for publication in IEEE Transactions on Wireless Communications (TWC

    Resource allocation for transmit hybrid beamforming in decoupled millimeter wave multiuser-MIMO downlink

    Get PDF
    This paper presents a study on joint radio resource allocation and hybrid precoding in multicarrier massive multiple-input multiple-output communications for 5G cellular networks. In this paper, we present the resource allocation algorithm to maximize the proportional fairness (PF) spectral efficiency under the per subchannel power and the beamforming rank constraints. Two heuristic algorithms are designed. The proportional fairness hybrid beamforming algorithm provides the transmit precoder with a proportional fair spectral efficiency among users for the desired number of radio-frequency (RF) chains. Then, we transform the number of RF chains or rank constrained optimization problem into convex semidefinite programming (SDP) problem, which can be solved by standard techniques. Inspired by the formulated convex SDP problem, a low-complexity, two-step, PF-relaxed optimization algorithm has been provided for the formulated convex optimization problem. Simulation results show that the proposed suboptimal solution to the relaxed optimization problem is near-optimal for the signal-to-noise ratio SNR <= 10 dB and has a performance gap not greater than 2.33 b/s/Hz within the SNR range 0-25 dB. It also outperforms the maximum throughput and PF-based hybrid beamforming schemes for sum spectral efficiency, individual spectral efficiency, and fairness index

    Improved User Tracking in 5G Millimeter Wave Mobile Networks via Refinement Operations

    Full text link
    The millimeter wave (mmWave) frequencies offer the availability of huge bandwidths to provide unprecedented data rates to next-generation cellular mobile terminals. However, directional mmWave links are highly susceptible to rapid channel variations and suffer from severe isotropic pathloss. To face these impairments, this paper addresses the issue of tracking the channel quality of a moving user, an essential procedure for rate prediction, efficient handover and periodic monitoring and adaptation of the user's transmission configuration. The performance of an innovative tracking scheme, in which periodic refinements of the optimal steering direction are alternated to sparser refresh events, are analyzed in terms of both achievable data rate and energy consumption, and compared to those of a state-of-the-art approach. We aim at understanding in which circumstances the proposed scheme is a valid option to provide a robust and efficient mobility management solution. We show that our procedure is particularly well suited to highly variant and unstable mmWave environments.Comment: Accepted for publication to the 16th IEEE Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET), Jun. 201
    corecore