3,317 research outputs found

    Decoding by Embedding: Correct Decoding Radius and DMT Optimality

    Get PDF
    The closest vector problem (CVP) and shortest (nonzero) vector problem (SVP) are the core algorithmic problems on Euclidean lattices. They are central to the applications of lattices in many problems of communications and cryptography. Kannan's \emph{embedding technique} is a powerful technique for solving the approximate CVP, yet its remarkable practical performance is not well understood. In this paper, the embedding technique is analyzed from a \emph{bounded distance decoding} (BDD) viewpoint. We present two complementary analyses of the embedding technique: We establish a reduction from BDD to Hermite SVP (via unique SVP), which can be used along with any Hermite SVP solver (including, among others, the Lenstra, Lenstra and Lov\'asz (LLL) algorithm), and show that, in the special case of LLL, it performs at least as well as Babai's nearest plane algorithm (LLL-aided SIC). The former analysis helps to explain the folklore practical observation that unique SVP is easier than standard approximate SVP. It is proven that when the LLL algorithm is employed, the embedding technique can solve the CVP provided that the noise norm is smaller than a decoding radius λ1/(2γ)\lambda_1/(2\gamma), where λ1\lambda_1 is the minimum distance of the lattice, and γ≈O(2n/4)\gamma \approx O(2^{n/4}). This substantially improves the previously best known correct decoding bound γ≈O(2n)\gamma \approx {O}(2^{n}). Focusing on the applications of BDD to decoding of multiple-input multiple-output (MIMO) systems, we also prove that BDD of the regularized lattice is optimal in terms of the diversity-multiplexing gain tradeoff (DMT), and propose practical variants of embedding decoding which require no knowledge of the minimum distance of the lattice and/or further improve the error performance.Comment: To appear in IEEE Transactions on Information Theor

    Local Testing for Membership in Lattices

    Get PDF
    Motivated by the structural analogies between point lattices and linear error-correcting codes, and by the mature theory on locally testable codes, we initiate a systematic study of local testing for membership in lattices. Testing membership in lattices is also motivated in practice, by applications to integer programming, error detection in lattice-based communication, and cryptography. Apart from establishing the conceptual foundations of lattice testing, our results include the following: 1. We demonstrate upper and lower bounds on the query complexity of local testing for the well-known family of code formula lattices. Furthermore, we instantiate our results with code formula lattices constructed from Reed-Muller codes, and obtain nearly-tight bounds. 2. We show that in order to achieve low query complexity, it is sufficient to design one-sided non-adaptive canonical tests. This result is akin to, and based on an analogous result for error-correcting codes due to Ben-Sasson et al. (SIAM J. Computing 35(1) pp1-21)

    Quantum Algorithm for Computing the Period Lattice of an Infrastructure

    Full text link
    We present a quantum algorithm for computing the period lattice of infrastructures of fixed dimension. The algorithm applies to infrastructures that satisfy certain conditions. The latter are always fulfilled for infrastructures obtained from global fields, i.e., algebraic number fields and function fields with finite constant fields. The first of our main contributions is an exponentially better method for sampling approximations of vectors of the dual lattice of the period lattice than the methods outlined in the works of Hallgren and Schmidt and Vollmer. This new method improves the success probability by a factor of at least 2^{n^2-1} where n is the dimension. The second main contribution is a rigorous and complete proof that the running time of the algorithm is polynomial in the logarithm of the determinant of the period lattice and exponential in n. The third contribution is the determination of an explicit lower bound on the success probability of our algorithm which greatly improves on the bounds given in the above works. The exponential scaling seems inevitable because the best currently known methods for carrying out fundamental arithmetic operations in infrastructures obtained from algebraic number fields take exponential time. In contrast, the problem of computing the period lattice of infrastructures arising from function fields can be solved without the exponential dependence on the dimension n since this problem reduces efficiently to the abelian hidden subgroup problem. This is also true for other important computational problems in algebraic geometry. The running time of the best classical algorithms for infrastructures arising from global fields increases subexponentially with the determinant of the period lattice.Comment: 52 pages, 4 figure
    • …
    corecore