101,188 research outputs found

    Which point sets admit a k-angulation?

    Get PDF
    For k >= 3, a k-angulation is a 2-connected plane graph in which every internal face is a k-gon. We say that a point set P admits a plane graph G if there is a straight-line drawing of G that maps V(G) onto P and has the same facial cycles and outer face as G. We investigate the conditions under which a point set P admits a k-angulation and find that, for sets containing at least 2k^2 points, the only obstructions are those that follow from Euler's formula.Comment: 13 pages, 7 figure

    Greedy Algorithms for Steiner Forest

    Full text link
    In the Steiner Forest problem, we are given terminal pairs {si,ti}\{s_i, t_i\}, and need to find the cheapest subgraph which connects each of the terminal pairs together. In 1991, Agrawal, Klein, and Ravi, and Goemans and Williamson gave primal-dual constant-factor approximation algorithms for this problem; until now, the only constant-factor approximations we know are via linear programming relaxations. We consider the following greedy algorithm: Given terminal pairs in a metric space, call a terminal "active" if its distance to its partner is non-zero. Pick the two closest active terminals (say si,tjs_i, t_j), set the distance between them to zero, and buy a path connecting them. Recompute the metric, and repeat. Our main result is that this algorithm is a constant-factor approximation. We also use this algorithm to give new, simpler constructions of cost-sharing schemes for Steiner forest. In particular, the first "group-strict" cost-shares for this problem implies a very simple combinatorial sampling-based algorithm for stochastic Steiner forest

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure

    Folding Polyominoes into (Poly)Cubes

    Full text link
    We study the problem of folding a polyomino PP into a polycube QQ, allowing faces of QQ to be covered multiple times. First, we define a variety of folding models according to whether the folds (a) must be along grid lines of PP or can divide squares in half (diagonally and/or orthogonally), (b) must be mountain or can be both mountain and valley, (c) can remain flat (forming an angle of 180∘180^\circ), and (d) must lie on just the polycube surface or can have interior faces as well. Second, we give all the inclusion relations among all models that fold on the grid lines of PP. Third, we characterize all polyominoes that can fold into a unit cube, in some models. Fourth, we give a linear-time dynamic programming algorithm to fold a tree-shaped polyomino into a constant-size polycube, in some models. Finally, we consider the triangular version of the problem, characterizing which polyiamonds fold into a regular tetrahedron.Comment: 30 pages, 19 figures, full version of extended abstract that appeared in CCCG 2015. (Change over previous version: Fixed a missing reference.

    Single-Strip Triangulation of Manifolds with Arbitrary Topology

    Full text link
    Triangle strips have been widely used for efficient rendering. It is NP-complete to test whether a given triangulated model can be represented as a single triangle strip, so many heuristics have been proposed to partition models into few long strips. In this paper, we present a new algorithm for creating a single triangle loop or strip from a triangulated model. Our method applies a dual graph matching algorithm to partition the mesh into cycles, and then merges pairs of cycles by splitting adjacent triangles when necessary. New vertices are introduced at midpoints of edges and the new triangles thus formed are coplanar with their parent triangles, hence the visual fidelity of the geometry is not changed. We prove that the increase in the number of triangles due to this splitting is 50% in the worst case, however for all models we tested the increase was less than 2%. We also prove tight bounds on the number of triangles needed for a single-strip representation of a model with holes on its boundary. Our strips can be used not only for efficient rendering, but also for other applications including the generation of space filling curves on a manifold of any arbitrary topology.Comment: 12 pages, 10 figures. To appear at Eurographics 200
    • …
    corecore