202 research outputs found

    Simultaneous Codeword Optimization (SimCO) for Dictionary Update and Learning

    Get PDF
    We consider the data-driven dictionary learning problem. The goal is to seek an over-complete dictionary from which every training signal can be best approximated by a linear combination of only a few codewords. This task is often achieved by iteratively executing two operations: sparse coding and dictionary update. In the literature, there are two benchmark mechanisms to update a dictionary. The first approach, such as the MOD algorithm, is characterized by searching for the optimal codewords while fixing the sparse coefficients. In the second approach, represented by the K-SVD method, one codeword and the related sparse coefficients are simultaneously updated while all other codewords and coefficients remain unchanged. We propose a novel framework that generalizes the aforementioned two methods. The unique feature of our approach is that one can update an arbitrary set of codewords and the corresponding sparse coefficients simultaneously: when sparse coefficients are fixed, the underlying optimization problem is similar to that in the MOD algorithm; when only one codeword is selected for update, it can be proved that the proposed algorithm is equivalent to the K-SVD method; and more importantly, our method allows us to update all codewords and all sparse coefficients simultaneously, hence the term simultaneous codeword optimization (SimCO). Under the proposed framework, we design two algorithms, namely, primitive and regularized SimCO. We implement these two algorithms based on a simple gradient descent mechanism. Simulations are provided to demonstrate the performance of the proposed algorithms, as compared with two baseline algorithms MOD and K-SVD. Results show that regularized SimCO is particularly appealing in terms of both learning performance and running speed.Comment: 13 page

    A Riemannian ADMM

    Full text link
    We consider a class of Riemannian optimization problems where the objective is the sum of a smooth function and a nonsmooth function, considered in the ambient space. This class of problems finds important applications in machine learning and statistics such as the sparse principal component analysis, sparse spectral clustering, and orthogonal dictionary learning. We propose a Riemannian alternating direction method of multipliers (ADMM) to solve this class of problems. Our algorithm adopts easily computable steps in each iteration. The iteration complexity of the proposed algorithm for obtaining an ϵ\epsilon-stationary point is analyzed under mild assumptions. To the best of our knowledge, this is the first Riemannian ADMM with provable convergence guarantee for solving Riemannian optimization problem with nonsmooth objective. Numerical experiments are conducted to demonstrate the advantage of the proposed method

    Deep Grassmann Manifold Optimization for Computer Vision

    Get PDF
    In this work, we propose methods that advance four areas in the field of computer vision: dimensionality reduction, deep feature embeddings, visual domain adaptation, and deep neural network compression. We combine concepts from the fields of manifold geometry and deep learning to develop cutting edge methods in each of these areas. Each of the methods proposed in this work achieves state-of-the-art results in our experiments. We propose the Proxy Matrix Optimization (PMO) method for optimization over orthogonal matrix manifolds, such as the Grassmann manifold. This optimization technique is designed to be highly flexible enabling it to be leveraged in many situations where traditional manifold optimization methods cannot be used. We first use PMO in the field of dimensionality reduction, where we propose an iterative optimization approach to Principal Component Analysis (PCA) in a framework called Proxy Matrix optimization based PCA (PM-PCA). We also demonstrate how PM-PCA can be used to solve the general LpL_p-PCA problem, a variant of PCA that uses arbitrary fractional norms, which can be more robust to outliers. We then present Cascaded Projection (CaP), a method which uses tensor compression based on PMO, to reduce the number of filters in deep neural networks. This, in turn, reduces the number of computational operations required to process each image with the network. Cascaded Projection is the first end-to-end trainable method for network compression that uses standard backpropagation to learn the optimal tensor compression. In the area of deep feature embeddings, we introduce Deep Euclidean Feature Representations through Adaptation on the Grassmann manifold (DEFRAG), that leverages PMO. The DEFRAG method improves the feature embeddings learned by deep neural networks through the use of auxiliary loss functions and Grassmann manifold optimization. Lastly, in the area of visual domain adaptation, we propose the Manifold-Aligned Label Transfer for Domain Adaptation (MALT-DA) to transfer knowledge from samples in a known domain to an unknown domain based on cross-domain cluster correspondences

    Advanced optimization algorithms for sensor arrays and multi-antenna communications

    Get PDF
    Optimization problems arise frequently in sensor array and multi-channel signal processing applications. Often, optimization needs to be performed subject to a matrix constraint. In particular, unitary matrices play a crucial role in communications and sensor array signal processing. They are involved in almost all modern multi-antenna transceiver techniques, as well as sensor array applications in biomedicine, machine learning and vision, astronomy and radars. In this thesis, algorithms for optimization under unitary matrix constraint stemming from Riemannian geometry are developed. Steepest descent (SD) and conjugate gradient (CG) algorithms operating on the Lie group of unitary matrices are derived. They have the ability to find the optimal solution in a numerically efficient manner and satisfy the constraint accurately. Novel line search methods specially tailored for this type of optimization are also introduced. The proposed approaches exploit the geometrical properties of the constraint space in order to reduce the computational complexity. Array and multi-channel signal processing techniques are key technologies in wireless communication systems. High capacity and link reliability may be achieved by using multiple transmit and receive antennas. Combining multi-antenna techniques with multicarrier transmission leads to high the spectral efficiency and helps to cope with severe multipath propagation. The problem of channel equalization in MIMO-OFDM systems is also addressed in this thesis. A blind algorithm that optimizes of a combined criterion in order to be cancel both inter-symbol and co-channel interference is proposed. The algorithm local converge properties are established as well
    corecore