3 research outputs found

    GREEMA: Proposal and Experimental Verification of Growing Robot by Eating Environmental MAterial for Landslide Disaster

    Full text link
    In areas that are inaccessible to humans, such as the lunar surface and landslide sites, there is a need for multiple autonomous mobile robot systems that can replace human workers. In particular, at landslide sites such as river channel blockages, robots are required to remove water and sediment from the site as soon as possible. Conventionally, several construction machines have been deployed to the site for civil engineering work. However, because of the large size and weight of conventional construction equipment, it is difficult to move multiple units of construction equipment to the site, resulting in significant transportation costs and time. To solve such problems, this study proposes a novel growing robot by eating environmental material called GREEMA, which is lightweight and compact during transportation, but can function by eating on environmental materials once it arrives at the site. GREEMA actively takes in environmental materials such as water and sediment, uses them as its structure, and removes them by moving itself. In this paper, we developed and experimentally verified two types of GREEMAs. First, we developed a fin-type swimming robot that passively takes water into its body using a water-absorbing polymer and forms a body to express its swimming function. Second, we constructed an arm-type robot that eats soil to increase the rigidity of its body. We discuss the results of these two experiments from the viewpoint of Explicit-Implicit control and describe the design theory of GREEMA

    A Systematic Approach to the Design of Embodiment with Application to Bio-Inspired Compliant Legged Robots

    Get PDF
    Bio-inspired legged robots with compliant actuation can potentially achieve motion properties in real world scenarios which are superior to conventionally actuated robots. In this thesis, a methodology is presented to systematically design and tailor passive and active control elements for elastically actuated robots. It is based on a formal specification of requirements derived from the main design principles for embodied agents as proposed by Pfeifer et al. which are transfered to dynamic model based multi objective optimization problems. The proposed approach is demonstrated and applied for the design of a biomechanically inspired, musculoskeletal bipedal robot to achieve walking and human-like jogging

    Dual structure of Mobiligence—Implicit Control and Explicit Control—

    No full text
    corecore