35 research outputs found

    View on 5G Architecture: Version 2.0

    Get PDF
    The 5G Architecture Working Group as part of the 5GPPP Initiative is looking at capturing novel trends and key technological enablers for the realization of the 5G architecture. It also targets at presenting in a harmonized way the architectural concepts developed in various projects and initiatives (not limited to 5GPPP projects only) so as to provide a consolidated view on the technical directions for the architecture design in the 5G era. The first version of the white paper was released in July 2016, which captured novel trends and key technological enablers for the realization of the 5G architecture vision along with harmonized architectural concepts from 5GPPP Phase 1 projects and initiatives. Capitalizing on the architectural vision and framework set by the first version of the white paper, this Version 2.0 of the white paper presents the latest findings and analyses with a particular focus on the concept evaluations, and accordingly it presents the consolidated overall architecture design

    Medium-transparent MAC protocols for converged optical wireless networks

    Get PDF
    In order to address the explosive demand for high-capacity and omnipresent wireless access, modern cell-based wireless networks are slowly adopting two major solution roadmaps. The first is the employment of small-cell formations in order to increase the overall spectral efficiency, whereas the second is the employment of higher frequency bands, such as the mm-wave 60GHz band, that offers vast amounts of bandwidth. Depending on the specific application, the above solutions inevitably require the installation and operational management of large amounts of Base Stations (BSs) or Access Points (APs), which ultimately diminishes the overall cost-effectiveness of the architecture. In order to reduce the system cost, Radio over Fiber (RoF) technology has been put forward as an ideal candidate solution, due to the fact that it provides functionally simple antenna units, often termed as Remote Antenna Units (RAUs) that are interconnected to a central managing entity, termed as the Central Office (CO), via an optical fiber. Although extensive research efforts have been dedicated to the development of the physical layer aspects regarding RoF technologies, such as CO/RAU physical layer design and radio signal transport techniques over fiber, very limited efforts have con-centrated on upper layer and resource management issues. In this dissertation, we are concerned with access control and resource management of RoF-based mm-wave network architectures targeting the exploitation of the dual medium and its centralized control properties in order to perform optimal optical/wireless/time resource allocation. In this dissertation, we propose a Medium-Transparent MAC (MT-MAC) protocol that concurrently administers the optical and wireless resources of a 60GHz RoF based network, seamlessly connecting the CO to the wireless terminals through minimal RAU intervention. In this way, the MT-MAC protocol forms extended reach 60GHz WLAN networks offering connectivity amongst wireless devices that are attached to the same or different RAUs under both Line of Sight (LOS) and non LOS conditions. The notion of medium-transparency relies on two parallel contention periods, the first in the optical domain and the second in the wireless frequency and time domains, with nested dataframe structures. The MT-MAC operation is based on a proposed RAU design that allows for wavelength selectivity functions, thus being compatible with completely passive optical distribution network implementations that are predominately used by telecom operators today. Two variants of the MT-MAC protocol are considered. The first offers dynamic wavelength allocation with fixed time windows, whereas the second targets fairness-sensitive applications by offering dynamic wavelength allocation with dynamic transmission opportunity window sizes, based on the number of active clients connected at each RAU. Both variants of the protocol are evaluated by both simulation and analytical means. For the latter part, this thesis introduces two analytical models for calculating saturation throughput and non-saturation packet delay for the converged MT-MAC protocol. Finally, this thesis presents an extensive study regarding the network planning and formation of 60GHz Gigabit WLAN networks when the latter are deployed over existing Passive Optical Network (PON) infrastructures. Three possible architectures where studied: i) the RoF approach, ii) the Radio & Fiber approach and iii) the hybrid RoF-plus-R&F approach that combines the properties of both the aforementioned architectures. During the elaboration of this thesis, one major key conclusion has been extracted. The work proposed in this thesis considers that there is a fundamental requirement for implementing new converged optical/wireless MAC protocols, that have the complete overview of both available resources in order to effectively administer the hybrid Radio-over-Fiber networks.A fin de atender la demanda explosiva de alta capacidad y acceso inalámbrico omnipresente, las redes inalámbricas basadas en celdas están poco a poco adoptando dos principales guías de solución. La primera es el empleo de formaciones de celdas pequeñas con el fin de aumentar la eficiencia espectral global, mientras que la segunda es el empleo de bandas de frecuencia superior, como la banda de 60GHz, la cual ofrece una gran cantidad de ancho de banda. Dependiendo de la aplicación en específico, las soluciones anteriores inevitable-mente requieren de una instalación y una gestión operativa de grandes cantidades de Estaciones Base o Puntos de Acceso, que en última instancia disminuye la rentabilidad de la arquitectura. Para reducir el coste, la tecnología radioeléctrica por fibra (RoF) se presenta como una solución ideal debido al hecho de que proporciona unidades de antenas de sim-ple funcionamiento, a menudo denominadas Unidades de Antenas Remotas (RAUs), las cuales están interconectadas a una entidad central de gestión, denominada Oficina Central (CO), a través de la fibra óptica. A pesar de que se han dedicado muchos esfuerzos de investigación al desarrollo de varios aspectos de las capas física con respecto a las tecnologías RoF, muy pocos esfuerzos se han concentrado en la capa superior y cuestiones de gestión de recursos. En esta tesis, nos enfocando en el control de acceso y gestión de recursos de arquitecturas RoF y comunicaciones milimétricas, con el fin de aprovechar y explotar el medio dual y las propiedades para realizar una óptima asignación de los recursos ópticos, inalámbricos y temporales. Nosotros proponemos un protocolo Transparente al Medio MAC (MT-MAC) que simultáneamente administre los recursos ópticos e inalámbricos de una red RoF a 60GHz, conectando a la perfección el CO a los terminales inalámbricos a través de una mínima intervención RAU. El protocolo MT-MAC forma unas redes WLAN 60GHz de alcance extendido, ofreciendo así conectividad entre los dispositivos inalámbricos que están conectados al mismo o diferentes RAUs bajo con o sin Línea de Vista (condiciones LOS o NLOS) respectivamente. La noción de transparencia al medio se basa en dos períodos de contención para-lelos, el primero en el dominio óptico y el segundo en la frecuencia inalámbrica y dominio del tiempo, con estructuras de datos anidados. La operación MT-MAC se basa en proponer un diseño RAU que permita la selectividad de funciones de longitud de onda. Dos variantes del protocolo MT- MAC son considerados; el primer ofrece asignación de longitud de onda dinámica con ventanas de tiempo fijo, mientras que la segunda tiene como objetivo entornos de aplicaciones sensibles ofreciendo asignación de longitud de onda con tamaño de ventana de oportunidad de transmisión dinámico, basado en el número de clientes conectados en cada RAU. Ambas variantes del protocolo están evaluadas tanto por medios analíticos como de simulación. En la segunda parte, esta tesis introduce dos modelos analíticos para calcular el rendimiento de saturación y no saturación del retardo de paquetes para el protocolo MT-MAC convergente. Finalmente, esta tesis presenta un extenso estudio de la planificación de red y la formación de redes 60GHz Gigabit WLAN cuando esta se encuentra desplegada sobre las ya existente infraestructuras de Redes Ópticas Pasivas (PONs). Tres posibles arquitecturas han sido estudiadas: i) el enfoque RoF, ii) el enfoque Radio y Fibra , y iii) el enfoque híbrido, RoF más R&F el cual combina las propiedades de ambas arquitecturas anteriormente mencionadas. Durante la elaboración de esta tesis, se ha extraído una importante conclusión: hay un requerimiento fundamental para implementar nuevos protocolos ópticos/inalámbricos convergentes, que tengan una completa visión de ambos recursos disponibles para poder administrar efectivamente las redes de tecnología RoF.Postprint (published version

    5G wireless network support using umanned aerial vehicles for rural and low-Income areas

    Get PDF
    >Magister Scientiae - MScThe fifth-generation mobile network (5G) is a new global wireless standard that enables state-of-the-art mobile networks with enhanced cellular broadband services that support a diversity of devices. Even with the current worldwide advanced state of broadband connectivity, most rural and low-income settings lack minimum Internet connectivity because there are no economic incentives from telecommunication providers to deploy wireless communication systems in these areas. Using a team of Unmanned Aerial Vehicles (UAVs) to extend or solely supply the 5G coverage is a great opportunity for these zones to benefit from the advantages promised by this new communication technology. However, the deployment and applications of innovative technology in rural locations need extensive research

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    A Survey on Non-Geostationary Satellite Systems: The Communication Perspective

    Get PDF
    The next phase of satellite technology is being characterized by a new evolution in non-geostationary orbit (NGSO) satellites, which conveys exciting new communication capabilities to provide non-terrestrial connectivity solutions and to support a wide range of digital technologies from various industries. NGSO communication systems are known for a number of key features such as lower propagation delay, smaller size, and lower signal losses in comparison to the conventional geostationary orbit (GSO) satellites, which can potentially enable latency-critical applications to be provided through satellites. NGSO promises a substantial boost in communication speed and energy efficiency, and thus, tackling the main inhibiting factors of commercializing GSO satellites for broader utilization. The promised improvements of NGSO systems have motivated this paper to provide a comprehensive survey of the state-of-the-art NGSO research focusing on the communication prospects, including physical layer and radio access technologies along with the networking aspects and the overall system features and architectures. Beyond this, there are still many NGSO deployment challenges to be addressed to ensure seamless integration not only with GSO systems but also with terrestrial networks. These unprecedented challenges are also discussed in this paper, including coexistence with GSO systems in terms of spectrum access and regulatory issues, satellite constellation and architecture designs, resource management problems, and user equipment requirements. Finally, we outline a set of innovative research directions and new opportunities for future NGSO research

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    D6.6 Final report on the METIS 5G system concept and technology roadmap

    Full text link
    This deliverable presents the METIS 5G system concept which was developed to fulfil the requirements of the beyond-2020 connected information society and to extend today’s wireless communication systems to include new usage scenarios. The METIS 5G system concept consists of three generic 5G services and four main enablers. The three generic 5G services are Extreme Mobile BroadBand (xMBB), Massive Machine- Type Communications (mMTC), and Ultra-reliable Machine-Type Communication (uMTC). The four main enablers are Lean System Control Plane (LSCP), Dynamic RAN, Localized Contents and Traffic Flows, and Spectrum Toolbox. An overview of the METIS 5G architecture is given, as well as spectrum requirements and considerations. System-level evaluation of the METIS 5G system concept has been conducted, and we conclude that the METIS technical objectives are met. A technology roadmap outlining further 5G development, including a timeline and recommended future work is given.Popovski, P.; Mange, G.; Gozalvez -Serrano, D.; Rosowski, T.; Zimmermann, G.; Agyapong, P.; Fallgren, M.... (2014). D6.6 Final report on the METIS 5G system concept and technology roadmap. http://hdl.handle.net/10251/7676

    Economically sustainable public security and emergency network exploiting a broadband communications satellite

    Get PDF
    The research contributes to work in Rapid Deployment of a National Public Security and Emergency Communications Network using Communication Satellite Broadband. Although studies in Public Security Communication networks have examined the use of communications satellite as an integral part of the Communication Infrastructure, there has not been an in-depth design analysis of an optimized regional broadband-based communication satellite in relation to the envisaged service coverage area, with little or no terrestrial last-mile telecommunications infrastructure for delivery of satellite solutions, applications and services. As such, the research provides a case study of a Nigerian Public Safety Security Communications Pilot project deployed in regions of the African continent with inadequate terrestrial last mile infrastructure and thus requiring a robust regional Communications Satellite complemented with variants of terrestrial wireless technologies to bridge the digital hiatus as a short and medium term measure apart from other strategic needs. The research not only addresses the pivotal role of a secured integrated communications Public safety network for security agencies and emergency service organizations with its potential to foster efficient information symmetry amongst their operations including during emergency and crisis management in a timely manner but demonstrates a working model of how analogue spectrum meant for Push-to-Talk (PTT) services can be re-farmed and digitalized as a “dedicated” broadband-based public communications system. The network’s sustainability can be secured by using excess capacity for the strategic commercial telecommunication needs of the state and its citizens. Utilization of scarce spectrum has been deployed for Nigeria’s Cashless policy pilot project for financial and digital inclusion. This effectively drives the universal access goals, without exclusivity, in a continent, which still remains the least wired in the world

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate
    corecore