29,630 research outputs found

    A two-phase approach for detecting recombination in nucleotide sequences

    Full text link
    Genetic recombination can produce heterogeneous phylogenetic histories within a set of homologous genes. Delineating recombination events is important in the study of molecular evolution, as inference of such events provides a clearer picture of the phylogenetic relationships among different gene sequences or genomes. Nevertheless, detecting recombination events can be a daunting task, as the performance of different recombinationdetecting approaches can vary, depending on evolutionary events that take place after recombination. We recently evaluated the effects of postrecombination events on the prediction accuracy of recombination-detecting approaches using simulated nucleotide sequence data. The main conclusion, supported by other studies, is that one should not depend on a single method when searching for recombination events. In this paper, we introduce a two-phase strategy, applying three statistical measures to detect the occurrence of recombination events, and a Bayesian phylogenetic approach in delineating breakpoints of such events in nucleotide sequences. We evaluate the performance of these approaches using simulated data, and demonstrate the applicability of this strategy to empirical data. The two-phase strategy proves to be time-efficient when applied to large datasets, and yields high-confidence results.Comment: 5 pages, 3 figures. Chan CX, Beiko RG and Ragan MA (2007). A two-phase approach for detecting recombination in nucleotide sequences. In Hazelhurst S and Ramsay M (Eds) Proceedings of the First Southern African Bioinformatics Workshop, 28-30 January, Johannesburg, 9-1

    rbrothers: R Package for Bayesian Multiple Change-Point Recombination Detection.

    Get PDF
    Phylogenetic recombination detection is a fundamental task in bioinformatics and evolutionary biology. Most of the computational tools developed to attack this important problem are not integrated into the growing suite of R packages for statistical analysis of molecular sequences. Here, we present an R package, rbrothers, that makes a Bayesian multiple change-point model, one of the most sophisticated model-based phylogenetic recombination tools, available to R users. Moreover, we equip the Bayesian change-point model with a set of pre- and post- processing routines that will broaden the application domain of this recombination detection framework. Specifically, we implement an algorithm that forms the set of input trees required by multiple change-point models. We also provide functionality for checking Markov chain Monte Carlo convergence and creating estimation result summaries and graphics. Using rbrothers, we perform a comparative analysis of two Salmonella enterica genes, fimA and fimH, that encode major and adhesive subunits of the type 1 fimbriae, respectively. We believe that rbrothers, available at R-Forge: http://evolmod.r-forge.r-project.org/, will allow researchers to incorporate recombination detection into phylogenetic workflows already implemented in R

    Addressing the shortcomings of three recent bayesian methods for detecting interspecific recombination in DNA sequence alignments

    Get PDF
    We address a potential shortcoming of three probabilistic models for detecting interspecific recombination in DNA sequence alignments: the multiple change-point model (MCP) of Suchard et al. (2003), the dual multiple change-point model (DMCP) of Minin et al. (2005), and the phylogenetic factorial hidden Markov model (PFHMM) of Husmeier (2005). These models are based on the Bayesian paradigm, which requires the solution of an integral over the space of branch lengths. To render this integration analytically tractable, all three models make the same assumption that the vectors of branch lengths of the phylogenetic tree are independent among sites. While this approximation reduces the computational complexity considerably, we show that it leads to the systematic prediction of spurious topology changes in the Felsenstein zone, that is, the area in the branch lengths configuration space where maximum parsimony consistently infers the wrong topology due to long-branch attraction. We apply two Bayesian hypothesis tests, based on an inter- and an intra-model approach to estimating the marginal likelihood. We then propose a revised model that addresses these shortcomings, and compare it with the aforementioned models on a set of synthetic DNA sequence alignments systematically generated around the Felsenstein zone

    Attention to attributes and objects in working memory

    Get PDF
    It has been debated on the basis of change-detection procedures whether visual working memory is limited by the number of objects, task-relevant attributes within those objects, or bindings between attributes. This debate, however, has been hampered by several limitations, including the use of conditions that vary between studies and the absence of appropriate mathematical models to estimate the number of items in working memory in different stimulus conditions. We re-examined working memory limits in two experiments with a wide array of conditions involving color and shape attributes, relying on a set of new models to fit various stimulus situations. In Experiment 2, a new procedure allowed identical retrieval conditions across different conditions of attention at encoding. The results show that multiple attributes compete for attention, but that retaining the binding between attributes is accomplished only by retaining the attributes themselves. We propose a theoretical account in which a fixed object capacity limit contains within it the possibility of the incomplete retention of object attributes, depending on the direction of attention

    Distinguishing regional from within-codon rate heterogeneity in DNA sequence alignments

    Get PDF
    We present an improved phylogenetic factorial hidden Markov model (FHMM) for detecting two types of mosaic structures in DNA sequence alignments, related to (1) recombination and (2) rate heterogeneity. The focus of the present work is on improving the modelling of the latter aspect. Earlier papers have modelled different degrees of rate heterogeneity with separate hidden states of the FHMM. This approach fails to appreciate the intrinsic difference between two types of rate heterogeneity: long-range regional effects, which are potentially related to differences in the selective pressure, and the short-term periodic patterns within the codons, which merely capture the signature of the genetic code. We propose an improved model that explicitly distinguishes between these two effects, and we assess its performance on a set of simulated DNA sequence alignments

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    A two-phase strategy for detecting recombination in nucleotide sequences

    Get PDF
    Genetic recombination can produce heterogeneous phylogenetic histories within a set of homologous genes. Delineating recombination events is important in the study of molecular evolution, as inference of such events provides a clearer picture of the phylogenetic relationships among different gene sequences or genomes. Nevertheless, detecting recombination events can be a daunting task, as the performance of different recombination-detecting approaches can vary, depending on evolutionary events that take place after recombination. We previously evaluated the effects of post-recombination events on the prediction accuracy of recombination-detecting approaches using simulated nucleotide sequence data. The main conclusion, supported by other studies, is that one should not depend on a single method when searching for recombination events. In this paper, we introduce a two-phase strategy, applying three statistical measures to detect the occurrence of recombination events, and a Bayesian phylogenetic approach to delineate breakpoints of such events in nucleotide sequences. We evaluate the performance of these approaches using simulated data, and demonstrate the applicability of this strategy to empirical data. The two-phase strategy proves to be time-efficient when applied to large datasets, and yields high-confidence results

    Detecting recombination in evolving nucleotide sequences

    Get PDF
    BACKGROUND: Genetic recombination can produce heterogeneous phylogenetic histories within a set of homologous genes. These recombination events can be obscured by subsequent residue substitutions, which consequently complicate their detection. While there are many algorithms for the identification of recombination events, little is known about the effects of subsequent substitutions on the accuracy of available recombination-detection approaches. RESULTS: We assessed the effect of subsequent substitutions on the detection of simulated recombination events within sets of four nucleotide sequences under a homogeneous evolutionary model. The amount of subsequent substitutions per site, prior evolutionary history of the sequences, and reciprocality or non-reciprocality of the recombination event all affected the accuracy of the recombination-detecting programs examined. Bayesian phylogenetic-based approaches showed high accuracy in detecting evidence of recombination event and in identifying recombination breakpoints. These approaches were less sensitive to parameter settings than other methods we tested, making them easier to apply to various data sets in a consistent manner. CONCLUSION: Post-recombination substitutions tend to diminish the predictive accuracy of recombination-detecting programs. The best method for detecting recombined regions is not necessarily the most accurate in identifying recombination breakpoints. For difficult detection problems involving highly divergent sequences or large data sets, different types of approach can be run in succession to increase efficiency, and can potentially yield better predictive accuracy than any single method used in isolation
    corecore