1,769 research outputs found

    Optimization with multivariate conditional value-at-risk constraints

    Get PDF
    For many decision making problems under uncertainty, it is crucial to develop risk-averse models and specify the decision makers' risk preferences based on multiple stochastic performance measures (or criteria). Incorporating such multivariate preference rules into optimization models is a fairly recent research area. Existing studies focus on extending univariate stochastic dominance rules to the multivariate case. However, enforcing multivariate stochastic dominance constraints can often be overly conservative in practice. As an alternative, we focus on the widely-applied risk measure conditional value-at-risk (CVaR), introduce a multivariate CVaR relation, and develop a novel optimization model with multivariate CVaR constraints based on polyhedral scalarization. To solve such problems for finite probability spaces we develop a cut generation algorithm, where each cut is obtained by solving a mixed integer problem. We show that a multivariate CVaR constraint reduces to finitely many univariate CVaR constraints, which proves the finite convergence of our algorithm. We also show that our results can be naturally extended to a wider class of coherent risk measures. The proposed approach provides a flexible, and computationally tractable way of modeling preferences in stochastic multi-criteria decision making. We conduct a computational study for a budget allocation problem to illustrate the effect of enforcing multivariate CVaR constraints and demonstrate the computational performance of the proposed solution methods

    Optimization with multivariate conditional value-at-risk constraints

    Get PDF
    For many decision making problems under uncertainty, it is crucial to develop risk-averse models and specify the decision makers' risk preferences based on multiple stochastic performance measures (or criteria). Incorporating such multivariate preference rules into optimization models is a fairly recent research area. Existing studies focus on extending univariate stochastic dominance rules to the multivariate case. However, enforcing multivariate stochastic dominance constraints can often be overly conservative in practice. As an alternative, we focus on the widely-applied risk measure conditional value-at-risk (CVaR), introduce a multivariate CVaR relation, and develop a novel optimization model with multivariate CVaR constraints based on polyhedral scalarization. To solve such problems for finite probability spaces we develop a cut generation algorithm, where each cut is obtained by solving a mixed integer problem. We show that a multivariate CVaR constraint reduces to finitely many univariate CVaR constraints, which proves the finite convergence of our algorithm. We also show that our results can be naturally extended to a wider class of coherent risk measures. The proposed approach provides a flexible, and computationally tractable way of modeling preferences in stochastic multi-criteria decision making. We conduct a computational study for a budget allocation problem to illustrate the effect of enforcing multivariate CVaR constraints and demonstrate the computational performance of the proposed solution methods

    Duality Based Characterizations of Efficient Facets

    Get PDF
    Most practical applications of multicriteria decision making can be formulated in terms of efficient points determined by preference cones with polyhedral closure. Using linear approximations and duality from mathematical programming, we characterize a family of supporting hyperplanes that define the efficient facets of a set of alternatives with respect to such preference cones. We show that a subset of these hyperplanes generate maximal efficient facets. These characterizations permit us to devise a new algorithm for generating all maximal efficient facets of multicriteria optimization problems with polyhedral structure.Supported in part by the National Science Foundation grant MCS77-24654. Supported in part by the Army Research Office (Durham) contract DAAG29-76-C-0064

    Using convex preference cones in multiple criteria decision making and related fields

    Get PDF
    This paper reviews our own and colleagues’ research on using convex preference cones in multiple criteria decision making and related fields. The original paper by Korhonen, Wallenius, and Zionts was published in Management Science in 1984. We first present the underlying theory, concepts, and method. Then we discuss applications of the theory, particularly for finding the most preferred alternative, finding a partial and total rank ordering of alternatives, as well as developing algorithms for solving multi-objective integer and other optimization problems

    Fast Conical Hull Algorithms for Near-separable Non-negative Matrix Factorization

    Full text link
    The separability assumption (Donoho & Stodden, 2003; Arora et al., 2012) turns non-negative matrix factorization (NMF) into a tractable problem. Recently, a new class of provably-correct NMF algorithms have emerged under this assumption. In this paper, we reformulate the separable NMF problem as that of finding the extreme rays of the conical hull of a finite set of vectors. From this geometric perspective, we derive new separable NMF algorithms that are highly scalable and empirically noise robust, and have several other favorable properties in relation to existing methods. A parallel implementation of our algorithm demonstrates high scalability on shared- and distributed-memory machines.Comment: 15 pages, 6 figure

    On the Intuition of Rank-Dependent Utility

    Get PDF
    Among the most popular models for decision under risk and uncertainty are the rank-dependent models, introduced by Quiggin and Schmeidler.Central concepts in these models are rank-dependence and comonotonicity.It has been suggested in the literature that these concepts are technical tools that have no intuitive or empirical content.This paper describes such contents.As a result, rank-dependence and comonotonicity become natural concepts upon which preference conditions, empirical tests, and improvements for utility measurement can be based.Further, a new derivation of the rank-dependent models is obtained.It is not based on observable preference axioms or on empirical data, but naturally follows from the intuitive perspective assumed.We think that the popularity of the rank-dependent theories is mainly due to the natural concepts adopted in these theories.rank-dependence;comonotonicity;Choquet integral;pessimism;uncertainty aversion;prospect theory

    Domination and Decomposition in Multiobjective Programming

    Get PDF
    During the last few decades, multiobjective programming has received much attention for both its numerous theoretical advances as well as its continued success in modeling and solving real-life decision problems in business and engineering. In extension of the traditionally adopted concept of Pareto optimality, this research investigates the more general notion of domination and establishes various theoretical results that lead to new optimization methods and support decision making. After a preparatory discussion of some preliminaries and a review of the relevant literature, several new findings are presented that characterize the nondominated set of a general vector optimization problem for which the underlying domination structure is defined in terms of different cones. Using concepts from linear algebra and convex analysis, a well known result relating nondominated points for polyhedral cones with Pareto solutions is generalized to nonpolyhedral cones that are induced by positively homogeneous functions, and to translated polyhedral cones that are used to describe a notion of approximate nondominance. Pareto-oriented scalarization methods are modified and several new solution approaches are proposed for these two classes of cones. In addition, necessary and sufficient conditions for nondominance with respect to a variable domination cone are developed, and some more specific results for the case of Bishop-Phelps cones are derived. Based on the above findings, a decomposition framework is proposed for the solution of multi-scenario and large-scale multiobjective programs and analyzed in terms of the efficiency relationships between the original and the decomposed subproblems. Using the concept of approximate nondominance, an interactive decision making procedure is formulated to coordinate tradeoffs between these subproblems and applied to selected problems from portfolio optimization and engineering design. Some introductory remarks and concluding comments together with ideas and research directions for possible future work complete this dissertation

    Robust Solutions to Uncertain Multiobjective Programs

    Get PDF
    Decision making in the presence of uncertainty and multiple conflicting objec-tives is a real-life issue, especially in the fields of engineering, public policy making, business management, and many others. The conflicting goals may originate from the variety of ways to assess a system’s performance such as cost, safety, and affordability, while uncertainty may result from inaccurate or unknown data, limited knowledge, or future changes in the environment. To address optimization problems that incor-porate these two aspects, we focus on the integration of robust and multiobjective optimization. Although the uncertainty may present itself in many different ways due to a diversity of sources, we address the situation of objective-wise uncertainty only in the coefficients of the objective functions, which is drawn from a finite set of scenarios. Among the numerous concepts of robust solutions that have been proposed and de-veloped, we concentrate on a strict concept referred to as highly robust efficiency in which a feasible solution is highly robust efficient provided that it is efficient with respect to every realization of the uncertain data. The main focus of our study is uncertain multiobjective linear programs (UMOLPs), however, nonlinear problems are discussed as well. In the course of our study, we develop properties of the highly robust efficient set, provide its characterization using the cone of improving directions associated with the UMOLP, derive several bound sets on the highly robust efficient set, and present a robust counterpart for a class of UMOLPs. As various results rely on the polar and strict polar of the cone of improving directions, as well as the acuteness of this cone, we derive properties and closed-form representations of the (strict) polar and also propose methods to verify the property of acuteness. Moreover, we undertake the computation of highly robust efficient solutions. We provide methods for checking whether or not the highly robust efficient set is empty, computing highly robust efficient points, and determining whether a given solution of interest is highly robust efficient. An application in the area of bank management is included
    corecore