3,451 research outputs found

    Low-Rank Matrices on Graphs: Generalized Recovery & Applications

    Get PDF
    Many real world datasets subsume a linear or non-linear low-rank structure in a very low-dimensional space. Unfortunately, one often has very little or no information about the geometry of the space, resulting in a highly under-determined recovery problem. Under certain circumstances, state-of-the-art algorithms provide an exact recovery for linear low-rank structures but at the expense of highly inscalable algorithms which use nuclear norm. However, the case of non-linear structures remains unresolved. We revisit the problem of low-rank recovery from a totally different perspective, involving graphs which encode pairwise similarity between the data samples and features. Surprisingly, our analysis confirms that it is possible to recover many approximate linear and non-linear low-rank structures with recovery guarantees with a set of highly scalable and efficient algorithms. We call such data matrices as \textit{Low-Rank matrices on graphs} and show that many real world datasets satisfy this assumption approximately due to underlying stationarity. Our detailed theoretical and experimental analysis unveils the power of the simple, yet very novel recovery framework \textit{Fast Robust PCA on Graphs

    Chiron: A Robust Recommendation System with Graph Regularizer

    Full text link
    Recommendation systems have been widely used by commercial service providers for giving suggestions to users. Collaborative filtering (CF) systems, one of the most popular recommendation systems, utilize the history of behaviors of the aggregate user-base to provide individual recommendations and are effective when almost all users faithfully express their opinions. However, they are vulnerable to malicious users biasing their inputs in order to change the overall ratings of a specific group of items. CF systems largely fall into two categories - neighborhood-based and (matrix) factorization-based - and the presence of adversarial input can influence recommendations in both categories, leading to instabilities in estimation and prediction. Although the robustness of different collaborative filtering algorithms has been extensively studied, designing an efficient system that is immune to manipulation remains a significant challenge. In this work we propose a novel "hybrid" recommendation system with an adaptive graph-based user/item similarity-regularization - "Chiron". Chiron ties the performance benefits of dimensionality reduction (through factorization) with the advantage of neighborhood clustering (through regularization). We demonstrate, using extensive comparative experiments, that Chiron is resistant to manipulation by large and lethal attacks

    A Comparative Study of Pairwise Learning Methods based on Kernel Ridge Regression

    Full text link
    Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction or network inference problems. During the last decade kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify existing kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency and spectral filtering properties. Our theoretical results provide valuable insights in assessing the advantages and limitations of existing pairwise learning methods.Comment: arXiv admin note: text overlap with arXiv:1606.0427

    A Collective Variational Autoencoder for Top-NN Recommendation with Side Information

    Full text link
    Recommender systems have been studied extensively due to their practical use in many real-world scenarios. Despite this, generating effective recommendations with sparse user ratings remains a challenge. Side information associated with items has been widely utilized to address rating sparsity. Existing recommendation models that use side information are linear and, hence, have restricted expressiveness. Deep learning has been used to capture non-linearities by learning deep item representations from side information but as side information is high-dimensional existing deep models tend to have large input dimensionality, which dominates their overall size. This makes them difficult to train, especially with small numbers of inputs. Rather than learning item representations, which is problematic with high-dimensional side information, in this paper, we propose to learn feature representation through deep learning from side information. Learning feature representations, on the other hand, ensures a sufficient number of inputs to train a deep network. To achieve this, we propose to simultaneously recover user ratings and side information, by using a Variational Autoencoder (VAE). Specifically, user ratings and side information are encoded and decoded collectively through the same inference network and generation network. This is possible as both user ratings and side information are data associated with items. To account for the heterogeneity of user rating and side information, the final layer of the generation network follows different distributions depending on the type of information. The proposed model is easy to implement and efficient to optimize and is shown to outperform state-of-the-art top-NN recommendation methods that use side information.Comment: 7 pages, 3 figures, DLRS workshop 201

    Extracting Implicit Social Relation for Social Recommendation Techniques in User Rating Prediction

    Full text link
    Recommendation plays an increasingly important role in our daily lives. Recommender systems automatically suggest items to users that might be interesting for them. Recent studies illustrate that incorporating social trust in Matrix Factorization methods demonstrably improves accuracy of rating prediction. Such approaches mainly use the trust scores explicitly expressed by users. However, it is often challenging to have users provide explicit trust scores of each other. There exist quite a few works, which propose Trust Metrics to compute and predict trust scores between users based on their interactions. In this paper, first we present how social relation can be extracted from users' ratings to items by describing Hellinger distance between users in recommender systems. Then, we propose to incorporate the predicted trust scores into social matrix factorization models. By analyzing social relation extraction from three well-known real-world datasets, which both: trust and recommendation data available, we conclude that using the implicit social relation in social recommendation techniques has almost the same performance compared to the actual trust scores explicitly expressed by users. Hence, we build our method, called Hell-TrustSVD, on top of the state-of-the-art social recommendation technique to incorporate both the extracted implicit social relations and ratings given by users on the prediction of items for an active user. To the best of our knowledge, this is the first work to extend TrustSVD with extracted social trust information. The experimental results support the idea of employing implicit trust into matrix factorization whenever explicit trust is not available, can perform much better than the state-of-the-art approaches in user rating prediction
    • …
    corecore