64 research outputs found

    Design, modeling, and simulation of secure X.509 certificate revocation

    Get PDF
    TLS communication over the internet has risen rapidly in the last seven years (2015--2022), and there were over 156M active SSL certificates in 2022. The state-of-the-art Public Key Infrastructure (PKI), encompassing protocols, computational resources, and digital certificates, has evolved for 24 years to become the de-facto choice for encrypted communication over the Internet even on newer platforms such as mobile devices and Internet-of-Things (IoT) (despite being low powered with computational constraints). However, certificate revocation is one sub-protocol in TLS communication that fails to meet the rising scalability demands and remains open to exploitation. In this dissertation, the standard for X.509 revocation is systematically reviewed and critically evaluated to identify its limitations and assess their impact on internet security. Because of fragmented revocation information and limited scalability, even the latest version of the X.509 revocation standard is susceptible to Man-in-the-Middle (MiTM) attacks. Blockchain technology can provide a decentralized and peer-to-peer distributed ledger to enable a unified, tamper-proof platform for X.509 certificate authorities to collaborate securely in a trustless environment. To understand blockchain technology\u27s capabilities and limitations in distributing X.509 revocation information, different blockchain platforms are explored and compared in terms of scalability, degree of decentralization, and cost of operation. Moreover, the unification of the revocation lists leads to a massive expansion in the number of revoked certificates to query by a verifying client thus increasing the latency during revocation lookup. And, to minimize revocation-status lookup times, cryptographic constructions and approximate set-membership data structures are prototyped and analyzed. The key contributions of this dissertation are twofold: 1) the novel design of a secure and robust system for distributing X.509 certificate revocation information; and, 2) the prototype, experimentation, and optimization of cascading XOR filter, fuse filter, and cuckoo filter for quick lookup with zero false positives (and zero false negatives). The Secure Certificate Revocation as a Peer Service (SCRaaPS) is designed using the Lightweight Mining consensus algorithm-based Scrybe blockchain protocol to store and distribute certificate revocation lists. And, the cascading fuse filter (demonstrating the highest space efficiency and fastest build time) is applied to minimize the revocation lookup time with zero false positives

    Studies in authentication

    Get PDF
    This thesis presents advances in several areas of authentication. First, we consider cryptographic accumulators, which are compact digital objects representing arbitrarily large sets. They support efficient proofs of membership (or, alternatively, of non-membership). We give the first definition of cryptographic accumulators in the UC framework, and construct two new accumulators: one uniquely suited for use in a revokable anonymous credential scheme, and one uniquely suited for use in a distributed system such as a blockchain-based PKI. Next, we consider multi-designated verifier signatures (MDVS). An MDVS is a special kind of signature that can only be verified by parties explicitly specified by the signer; more than that, even if those designated verifiers wanted to prove to an external party (e.g. an adversary) that a certain message was signed by the signer, they should be unable to do so. This is crucial in contexts where off-the-record communication is desirable; the sender may not want to be provably linked to a possibly sensitive message, but still want the intended recipients to be able to verify the authenticity of the message. Existing literature defines and builds limited notions of MDVS, where the off-the-record property only holds when it is conceivable that all verifiers collude. We strengthen this property to support any subset of colluding verifiers, and give two constructions of our stronger notion of MDVS: one from functional encryption, and one from standard primitives (but with a slightly larger signature size). Finally, we consider fuzzy password authenticated key exchange (Fuzzy PAKE). PAKEs are protocols which enable two parties holding the same password (that is, the same potentially low-entropy, non-uniform string) to agree on a (high-entropy, uniform) secret key in a way that resists man-in-the-middle attacks and offline dictionary attacks on the password. We define Fuzzy PAKE, a special kind of PAKE where the passwords used for authentication may contain some errors. We provide the first efficient and general solutions to this problem that enable, for example, key agreement based on commonly used biometrics such as iris scans

    Enhancing Privacy Protection:Set Membership, Range Proofs, and the Extended Access Control

    Get PDF
    Privacy has recently gained an importance beyond the field of cryptography. In that regard, the main goal behind this thesis is to enhance privacy protection. All of the necessary mathematical and cryptographic preliminaries are introduced at the start of this thesis. We then show in Part I how to improve set membership and range proofs, which are cryptographic primitives enabling better privacy protection. Part II shows how to improve the standards for Machine Readable Travel Documents (MRTDs), such as biometric passports. Regarding set membership proofs, we provide an efficient protocol based on the Boneh-Boyen signature scheme. We show that alternative signature schemes can be used and we provide a general protocol description that can be applied for any secure signature scheme. We also show that signature schemes in our design can be replaced by cryptographic accumulators. For range proofs, we provide interactive solutions where the range is divided in a base u and the u-ary digits are handled by one of our set membership proofs. A general construction is also provided for any set membership proof. We additionally explain how to handle arbitrary ranges with either two range proofs or with an improved solution based on sumset representation. These efficient solutions achieve, to date, the lowest asymptotical communication load. Furthermore, this thesis shows that the first efficient non-interactive range proof is insecure. This thesis thus provides the first efficient and secure non-interactive range proof. In the case of MRTDs, two standards exist: one produced by the International Civil Aviation Organization (ICAO) and the other by the European Union, which is called the Extended Access Control (EAC). Although this thesis focuses on the EAC, which is supposed to solve all privacy concerns, it shows that both standards fail to provide complete privacy protection. Lastly, we provide several solutions to improve them

    Privacy Preserving Cryptographic Protocols for Secure Heterogeneous Networks

    Get PDF
    Disertační práce se zabývá kryptografickými protokoly poskytující ochranu soukromí, které jsou určeny pro zabezpečení komunikačních a informačních systémů tvořících heterogenní sítě. Práce se zaměřuje především na možnosti využití nekonvenčních kryptografických prostředků, které poskytují rozšířené bezpečnostní požadavky, jako je například ochrana soukromí uživatelů komunikačního systému. V práci je stanovena výpočetní náročnost kryptografických a matematických primitiv na různých zařízeních, které se podílí na zabezpečení heterogenní sítě. Hlavní cíle práce se zaměřují na návrh pokročilých kryptografických protokolů poskytujících ochranu soukromí. V práci jsou navrženy celkově tři protokoly, které využívají skupinových podpisů založených na bilineárním párování pro zajištění ochrany soukromí uživatelů. Tyto navržené protokoly zajišťují ochranu soukromí a nepopiratelnost po celou dobu datové komunikace spolu s autentizací a integritou přenášených zpráv. Pro navýšení výkonnosti navržených protokolů je využito optimalizačních technik, např. dávkového ověřování, tak aby protokoly byly praktické i pro heterogenní sítě.The dissertation thesis deals with privacy-preserving cryptographic protocols for secure communication and information systems forming heterogeneous networks. The thesis focuses on the possibilities of using non-conventional cryptographic primitives that provide enhanced security features, such as the protection of user privacy in communication systems. In the dissertation, the performance of cryptographic and mathematic primitives on various devices that participate in the security of heterogeneous networks is evaluated. The main objectives of the thesis focus on the design of advanced privacy-preserving cryptographic protocols. There are three designed protocols which use pairing-based group signatures to ensure user privacy. These proposals ensure the protection of user privacy together with the authentication, integrity and non-repudiation of transmitted messages during communication. The protocols employ the optimization techniques such as batch verification to increase their performance and become more practical in heterogeneous networks.

    Privacy-preserving and accountable on-the-road prosecution of invalid vehicular mandatory authorizations

    Get PDF
    Nowadays, improving road safety is one of the major challenges in developed countries and, to this regard, attaining more effectiveness in the enforcement of road safety policies has become a key target. In particular, enforcing the requirements related to the technical and administrative mandatory documentation of on-the-road motor vehicles is one of the critical issues. The use of modern technologies in the context of Intelligent Transportation Systems (ITS) could enable the design of a more convenient, frequent and effective enforcement system compared to the traditional human patrol controls. In this article we propose a novel system for the on-the-fly verification of mandatory technical and administrative documentation of motor vehicles. Vehicles not complying with the required regulations will be identified and sanctioned whereas those vehicles, observant of the mandatory regulations, will maintain anonymity and non-traceability of their whereabouts. The proposed system is based on the use of anonymous credentials which will be loaded onto the vehicle to automatically and on-the-fly prove holdership of required credentials without requiring the vehicle to stop beside the road. We also implement a prototype of the credential system and analyze the feasibility of our solution in terms of computational cost and time to perform such telematic controls.This work has been funded by grant CCG10-UC3M/TIC-5174 (project PRECIOUS) and partially by grant TIN2009-13461 (project E-SAVE).En prens

    Foundations of Fully Dynamic Group Signatures

    Get PDF
    Group signatures allow members of a group to anonymously sign on behalf of the group. Membership is administered by a designated group manager. The group manager can also reveal the identity of a signer if and when needed to enforce accountability and deter abuse. For group signatures to be applicable in practice, they need to support fully dynamic groups, i.e., users may join and leave at any time. Existing security definitions for fully dynamic group signatures are informal, have shortcomings, and are mutually incompatible. We fill the gap by providing a formal rigorous security model for fully dynamic group signatures. Our model is general and is not tailored toward a specific design paradigm and can therefore, as we show, be used to argue about the security of different existing constructions following different design paradigms. Our definitions are stringent and when possible incorporate protection against maliciously chosen keys. We consider both the case where the group management and tracing signatures are administered by the same authority, i.e., a single group manager, and also the case where those roles are administered by two separate authorities, i.e., a group manager and an opening authority. We also show that a specialization of our model captures existing models for static and partially dynamic schemes. In the process, we identify a subtle gap in the security achieved by group signatures using revocation lists. We show that in such schemes new members achieve a slightly weaker notion of traceability. The flexibility of our security model allows to capture such relaxation of traceability

    Identity and identification in an information society: Augmenting formal systems of identification with technological artefacts

    Get PDF
    Information and Communication Technology (ICT) are transforming society’s information flows. These new interactive environments decouple agents, information and actions from their original contexts and this introduces challenges when evaluating trustworthiness and intelligently placing trust.This thesis develops methods that can extend institutional trust into digitally enhanced interactive settings. By applying privacy-preserving cryptographic protocols within a technical architecture, this thesis demonstrates how existing human systems of identification that support institutional trust can be augmented with ICT in ways that distribute trust, respect privacy and limit the potential for abuse. Importantly, identification systems are located within a sociologically informed framework of interaction where identity is more than a collection of static attributes.A synthesis of the evolution and systematisation of cryptographic knowledge is presented and this is juxtaposed against the ideas developed within the digital identity community. The credential mechanism, first conceptualised by David Chaum, has matured into a number of well specified mathematical protocols. This thesis focuses on CL-RSA and BBS+, which are both signature schemes with efficient protocols that can instantiate a credential mechanism with strong privacy-preserving properties.The processes of managing the identification of healthcare professionals as they navigate their careers within the Scottish Healthcare Ecosystem provide a concrete case study for this work. The proposed architecture mediates the exchange of verifiable, integrity-assured evidence that has been cryptographically signed by relevant healthcare institutions, but is stored, managed and presented by the healthcare professionals to whom the evidence pertains.An evaluation of the integrity-assured transaction data produced by this architecture demonstrates how it could be integrated into digitally augmented identification processes, increasing the assurance that can be placed in these processes. The technical architecture is shown to be practical through a series of experiments run under realistic production-like settings.This work demonstrates that designing decentralised, standards-based, privacy-preserving identification systems for trusted professionals within highly assured social contexts can distribute institutionalised trust to trustworthy individuals and empower these individuals to interface with society’s increasingly socio-technical systems
    corecore