27 research outputs found

    Electromagnetic backscatter modelling of icebergs at c-band in an ocean environment

    Get PDF
    This thesis outlines the development of an electromagnetic (EM) backscatter model of icebergs. It is a necessary first step for the generation of in-house synthetic aperture radar (SAR) data of icebergs to support optimum iceberg/ship classifier design. The EM modelling was developed in three stages. At first, an EM backscatter model was developed to generate simulated SAR data chips of iceberg targets at small incidence angles. The model parameters were set to mimic a dual polarized dataset collected at C-Band with the Sentinel-1A satellite. The simulated SAR data chips were compared with signatures and radiometric properties of the satellite data, including total radar cross section (TRCS). A second EM model was developed to mimic the parameters of a second SAR data collection with RADARSAT-2; this second data collection was at larger incidence angles and was fully polarimetric (four channels and interchannel phase). The full polarimetric SAR data allowed for a comparison of modelled TRCS and polarimetric decompositions. Finally, the EM backscatter models were tested in the context of iceberg/ship classification by comparing the performance of various computer vision classifiers using both simulated and real SAR image data of iceberg and vessel targets. This step is critical to check the compatibility of simulated data with the real data, and the ability to mix real and simulated SAR imagery for the generation of skilled classifiers. An EM backscatter modelling tool called GRECOSAR was used for the modelling work. GRECOSAR includes the ability to generate small scenes of the ocean using Pierson-Moskowitz spectral parameters. It also allows the placement of a 3D target shape into that ocean scene. Therefore, GRECOSAR is very useful for simulating SAR targets, however it can only model single layer scattering from the targets. This was found to be limiting in that EM scattering throughout volume of the iceberg could not be generated. This resulted in EM models that included only surface scattering of the iceberg. In order to generate realistic SAR scenes of icebergs on the ocean, 3D models of icebergs were captured in a series of field programs off the coast of Newfoundland and Labrador, Canada. The 3D models of the icebergs were obtained using a light detection and ranging (LiDAR) and multi-beam sonar data from a specially equipped vessel by a team of C-CORE. While profiling the iceberg targets, SAR images from satellites were captured for comparison with the simulated SAR images. The analysis of the real and simulated SAR imagery included comparisons of TRCS, SAR signature morphology and polarimetric decompositions of the targets. In general, these comparisons showed a good consistency between the simulated and real SAR scene. Simulations were also performed with varying target orientation and sea conditions (i.e., wind speed and direction). A wide variability of the TRCS and SAR signature morphology was observed with varying scene parameters. Icebergs were modelled using a high dielectric constant to mimic melting iceberg surfaces as seen during field work. Given that GRECOSAR could only generate surface backscatter, a mathematical model was developed to quantify the effect of melt water on the amount of surface and volume backscatter that might be expected from the icebergs. It was found that the icebergs in a high state of melt should produce predominantly surface scatter, thus validating the use of GRECOSAR for icebergs in this condition. Once the simulated SAR targets were validated against the real SAR data collections, a large dataset of simulated SAR chips of ships and icebergs were created specifically for the purpose of target classification. SAR chips were generated at varying imaging parameters and target sizes and passed on to an iceberg/ship classifier. Real and simulated SAR chips were combined in varying quantities (or targets) resulting in a series of different classifiers of varying skill. A good agreement between the classifier’s performance was found. This indicates the compatibility of the simulated SAR imagery with this application and provides an indication that the simulated data set captures all the necessary physical properties of icebergs for ship and iceberg classification

    Detection and tracking of ships in the Canadian Arctic

    Get PDF

    Ocean remote sensing techniques and applications: a review (Part II)

    Get PDF
    As discussed in the first part of this review paper, Remote Sensing (RS) systems are great tools to study various oceanographic parameters. Part I of this study described different passive and active RS systems and six applications of RS in ocean studies, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD). In Part II, the remaining nine important applications of RS systems for ocean environments, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery are comprehensively reviewed and discussed. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed.Peer ReviewedPostprint (published version

    Statistical comparison of SAR backscatter from icebergs embedded in sea ice and in open water using RADARSAT-2 images of in Newfoundland waters and the Davis Strait

    Get PDF
    Icebergs are considered a threat to marine operations. Satellite monitoring of icebergs is one option to aid in the development of iceberg hazard maps. Satellite synthetic aperture radar (SAR) is an obvious choice because of its relative weather independence, day and night operation. Nonetheless, the detection of icebergs in SAR can be a challenge, particularly with high iceberg areal density, heterogeneous background clutter and the presence of sea ice. This thesis investigates and compares polarimetric signatures of icebergs embedded in sea ice and icebergs in open water. In this thesis, RADARSAT-2 images have been used for analysis, which was acquired over locations near the coastline (approximately 3-35 km) of the islands of Newfoundland and Greenland. All icebergs considered here are in the lower incident angle range (below 30 degrees) of the SAR acquisition geometry. For analysis, polarimetry parameters such as co- (HH) and cross- (HV) polarization and several decomposition techniques, specifically Pauli, Freeman-Durden, Yamaguchi, Cloud-Pottier and van Zyl classification, have been used to determine the polarimetric signatures of icebergs and sea ice. Statistical hypothesis tests were used to determine the differences among backscatters from different icebergs. Statistical results tend to show a dominant surface scattering mechanism for icebergs. Moreover, icebergs in open water produce larger volume scatter than icebergs in sea ice, while icebergs in sea ice produce larger surface scatter than icebergs in open water. In addition, there appear to be minor observable differences between icebergs in Greenland and icebergs in Newfoundland

    Dual-polarization (HH/HV) RADARSAT-2 ScanSAR Observations of New, Young and First-year Sea Ice

    Get PDF
    Observations of sea ice from space are routinely used to monitor sea ice extent, concentration and type to support human marine activity and climate change studies. In this study, eight dual-polarization (dual-pol) (HH/HV) RADARSAT-2 ScanSAR images acquired over the Gulf of St. Lawrence during the winter of 2009 are analysed to determine what new or improved sea ice information is provided by dual-pol C-band synthetic aperture radar (SAR) data at wide swath widths, relative to single co-pol data. The objective of this study is to assess how dual-pol RADARSAT-2 ScanSAR data might improve operational ice charts and derived sea ice climate data records. In order to evaluate the dual-pol data, ice thickness and surface roughness measurements and optical remote sensing data were compared to backscatter signatures observed in the SAR data. The study found that: i) dual-pol data provide improved separation of ice and open water, particularly at steep incidence angles and high wind speeds; ii) the contrast between new, young and first-year (FY) ice types is reduced in the cross-pol channel; and iii) large areas of heavily deformed ice can reliably be separated from level ice in the dual-pol data, but areas of light and moderately ridged ice cannot be resolved and the thickness of heavily deformed ice cannot be determined. These results are limited to observations of new, young and FY ice types in winter conditions. From an operational perspective, the improved separation of ice and open water will increase the accuracy of ice edge and total ice concentration estimates while reducing the time required to produce image analysis charts. Further work is needed to determine if areas of heavily ridged ice can be separated from areas of heavily rafted ice based on knowledge of ice conditions in the days preceding the formation of high backscatter deformed ice. If rafted and ridged ice can be separated, tactical ridged ice information should be included on image analysis charts. The dual-pol data can also provide small improvements to ice extent and concentration data in derived climate data records. Further analysis of dual-pol RADARSAT-2 ScanSAR data over additional ice regimes and seasons is required

     Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography

    Spaceborne synthetic aperture radar: Current status and future directions. A report to the Committee on Earth Sciences, Space Studies Board, National Research Council

    Get PDF
    This report provides a context in which questions put forth by NASA's Office of Mission to Planet Earth (OMPTE) regarding the next steps in spaceborne synthetic aperture radar (SAR) science and technology can be addressed. It summarizes the state-of-the-art in theory, experimental design, technology, data analysis, and utilization of SAR data for studies of the Earth, and describes potential new applications. The report is divided into five science chapters and a technology assessment. The chapters summarize the value of existing SAR data and currently planned SAR systems, and identify gaps in observational capabilities needing to be filled to address the scientific questions. Cases where SAR provides complementary data to other (non-SAR) measurement techniques are also described. The chapter on technology assessment outlines SAR technology development which is critical not only to NASA's providing societally relevant geophysical parameters but to maintaining competitiveness in SAR technology, and promoting economic development

    Assessment of high resolution SAR imagery for mapping floodplain water bodies: a comparison between Radarsat-2 and TerraSAR-X

    Get PDF
    Flooding is a world-wide problem that is considered as one of the most devastating natural hazards. New commercially available high spatial resolution Synthetic Aperture RADAR satellite imagery provides new potential for flood mapping. This research provides a quantitative assessment of high spatial resolution RADASAT-2 and TerraSAR-X products for mapping water bodies in order to help validate products that can be used to assist flood disaster management. An area near Dhaka in Bangladesh is used as a test site because of the large number of water bodies of different sizes and its history of frequent flooding associated with annual monsoon rainfall. Sample water bodies were delineated in the field using kinematic differential GPS to train and test automatic methods for water body mapping. SAR sensors products were acquired concurrently with the field visits; imagery were acquired with similar polarization, look direction and incidence angle in an experimental design to evaluate which has best accuracy for mapping flood water extent. A methodology for mapping water areas from non-water areas was developed based on radar backscatter texture analysis. Texture filters, based on Haralick occurrence and co-occurrence measures, were compared and images classified using supervised, unsupervised and contextual classifiers. The evaluation of image products is based on an accuracy assessment of error matrix method using randomly selected ground truth data. An accuracy comparison was performed between classified images of both TerraSAR-X and Radarsat-2 sensors in order to identify any differences in mapping floods. Results were validated using information from field inspections conducted in good conditions in February 2009, and applying a model-assisted difference estimator for estimating flood area to derive Confidence Interval (CI) statistics at the 95% Confidence Level (CL) for the area mapped as water. For Radarsat-2 Ultrafine, TerraSAR-X Stripmap and Spotlight imagery, overall classification accuracy was greater than 93%. Results demonstrate that small water bodies down to areas as small as 150m² can be identified routinely from 3 metre resolution SAR imagery. The results further showed that TerraSAR-X stripmap and spotlight images have better overall accuracy than RADARSAT-2 ultrafine beam modes images. The expected benefits of the research will be to improve the provision of data to assess flood risk and vulnerability, thus assisting in disaster management and post-flood recovery

    Quad polarimetric synthetic aperture radar analysis of icebergs in Greenland and Svalbard

    Get PDF
    Polarimetric synthetic aperture radar (PolSAR) has been widely used in ocean and cryospheric applications. This is because, PolSAR can be used in all-day operations and in areas of cloud cover, and therefore can provide valuable large-scale monitoring in polar regions, which is very helpful to shipping and offshore maritime operations. In the last decades, attention has turned to the potential of PolSAR to detect icebergs in the Arctic since they are a major hazard to vessels. However, there is a substantial lack of literature exploring the potentialities of PolSAR and the understanding of iceberg scattering mechanisms. Additionally, it is not known if high resolution PolSAR can be used to detect icebergs smaller than 120 metres. This thesis aims to improve the knowledge of the use of PolSAR scattering mechanisms of icebergs, and detection of small icebergs. First, an introduction to PolSAR is outlined in chapter two, and monitoring of icebergs is presented in chapter three. The first data chapter (Chapter 4) is focused on developing a multi-scale analysis of icebergs using parameters from the Cloude-Pottier and the Yamaguchi decompositions, the polarimetric span and the Pauli scattering vector. This method is carried out using ALOS-2 PALSAR quad polarimetric L-band SAR on icebergs in Greenland. This approach outlines the good potential for using PolSAR for future iceberg classification. One of the main important outcomes is that icebergs are composed by a combination of single targets, which therefore may require a more complex way of processing SAR data to properly extract physical information. In chapter five, the problem of detecting icebergs is addressed by introducing six state-of-the-art detectors previously applied to vessel monitoring. These detectors are the Dual Intensity Polarisation Ratio Anomaly Detector (iDPolRAD), Polarimetric Notch Filter (PNF), Polarimetric Matched Filter (PMF), reflection symmetry (sym), Optimal Polarimetric Detector (OPD) and the Polarimetric Whitening Filter (PWF). Cloude-Pottier entropy, and first and third eigenvalues (eig1 and eig3) of the coherency matrix are also utilised as parameters for comparison. This approach uses the same ALOS-2 dataset, but also evaluates detection performance in two scenarios: icebergs in open ocean, and in sea ice. Polarimetric modes (quad-pol, dual-pol, and single intensities) are also considered for comparison. Currently it is very difficult to detect icebergs less than 120 metres in length using this approach, due to the scattering mechanisms of icebergs and sea ice being very similar. However, it was possible to obtain detection performances of the OPD and PWF, which both showed a Probability of Detection (PF) of 0.99 when the Probability of False Alarms (PF) was set to 10-5 in open ocean. Similarly, in dual pol images, the PWF gave the best performance with a PD of 0.90. Results in sea ice found eig3 to be the best detector with a PD of 0.90 while in dual-pol mode, iDPolRAD gave a PD of 0.978. Single intensity detector performance found the HV channel gave the best detection with a PD of 0.99 in open ocean and 0.87 in sea ice. In the previous two approaches, only satellite data is used. However, in chapter six, data from a ground-based Ku-band Gamma Portable Radio Interferometer (GPRI) instrument is introduced, providing images that are synchronised with the satellite acquisitions. In this approach, the same six detectors are applied to three multitemporal RADARSAT-2 quad pol C-band SAR images on icebergs in Kongsfjorden, Svalbard to evaluate the detection performance within a changing fjord environment. As before, we also make use of Cloude-Pottier entropy, eig1 and eig3. Finally, we evaluate the target-to-clutter ratio (TCR) of the icebergs and check for correlation between the backscattering coefficients and the iceberg dimension. The results obtained from this thesis present original additions to the literature that contributes to the understanding of PolSAR in cryospheric applications. Although these methods are applied to PolSAR and ground-based radar on vessels, they have been applied for the first time on icebergs in this thesis. To summarise, the main findings are that icebergs cannot be represented as single or partial targets, but they do exhibit a collection of single targets clustered together. This result leads to the fact that entropy is not sufficient as a parameter to detect icebergs. Detection results show that the OPD and PWF detectors perform best in an open ocean setting and using quad-pol mode. These results are degraded in dual-pol mode, while single intensity detection is best in the HV cross polarisation channel. When these detectors are applied to the RADARSAT-2 in Svalbard, the OPD and PWF detectors also perform best with PD values ranging between 0.5-0.75 for a PF of 0.01-0.05. However, the sea ice present in the fjord degrades performance across all detectors. Correlation plots with iceberg size show that a regression is not straightforward and Computer Vision methodologies may work best for this

    Segmentation of RADARSAT-2 Dual-Polarization Sea Ice Imagery

    Get PDF
    The mapping of sea ice is an important task for understanding global climate and for safe shipping. Currently, sea ice maps are created by human analysts with the help of remote sensing imagery, including synthetic aperture radar (SAR) imagery. While the maps are generally correct, they can be somewhat subjective and do not have pixel-level resolution due to the time consuming nature of manual segmentation. Therefore, automated sea ice mapping algorithms such as the multivariate iterative region growing with semantics (MIRGS) sea ice image segmentation algorithm are needed. MIRGS was designed to work with one-channel single-polarization SAR imagery from the RADARSAT-1 satellite. The launch of RADARSAT-2 has made available two-channel dual-polarization SAR imagery for the purposes of sea ice mapping. Dual-polarization imagery provides more information for distinguishing ice types, and one of the channels is less sensitive to changes in the backscatter caused by the SAR incidence angle parameter. In the past, this change in backscatter due to the incidence angle was a key limitation that prevented automatic segmentation of full SAR scenes. This thesis investigates techniques to make use of the dual-polarization data in MIRGS. An evaluation of MIRGS with RADARSAT-2 data was performed and showed that some detail was lost and that the incidence angle caused errors in segmentation. Several data fusion schemes were investigated to determine if they can improve performance. Gradient generation methods designed to take advantage of dual-polarization data, feature space fusion using linear and non-linear transforms as well as image fusion methods based on wavelet combination rules were implemented and tested. Tuning of the MIRGS parameters was performed to find the best set of parameters for segmentation of dual-polarization data. Results show that the standard MIRGS algorithm with default parameters provides the highest accuracy, so no changes are necessary for dual-polarization data. A hierarchical segmentation scheme that segments the dual-polarization channels separately was implemented to overcome the incidence angle errors. The technique is effective but requires more user input than the standard MIRGS algorithm
    corecore