11,786 research outputs found

    An Efficient Primal-Dual Prox Method for Non-Smooth Optimization

    Full text link
    We study the non-smooth optimization problems in machine learning, where both the loss function and the regularizer are non-smooth functions. Previous studies on efficient empirical loss minimization assume either a smooth loss function or a strongly convex regularizer, making them unsuitable for non-smooth optimization. We develop a simple yet efficient method for a family of non-smooth optimization problems where the dual form of the loss function is bilinear in primal and dual variables. We cast a non-smooth optimization problem into a minimax optimization problem, and develop a primal dual prox method that solves the minimax optimization problem at a rate of O(1/T)O(1/T) {assuming that the proximal step can be efficiently solved}, significantly faster than a standard subgradient descent method that has an O(1/T)O(1/\sqrt{T}) convergence rate. Our empirical study verifies the efficiency of the proposed method for various non-smooth optimization problems that arise ubiquitously in machine learning by comparing it to the state-of-the-art first order methods

    Primal Dual Alternating Proximal Gradient Algorithms for Nonsmooth Nonconvex Minimax Problems with Coupled Linear Constraints

    Full text link
    Nonconvex minimax problems have attracted wide attention in machine learning, signal processing and many other fields in recent years. In this paper, we propose a primal dual alternating proximal gradient (PDAPG) algorithm and a primal dual proximal gradient (PDPG-L) algorithm for solving nonsmooth nonconvex-strongly concave and nonconvex-linear minimax problems with coupled linear constraints, respectively. The corresponding iteration complexity of the two algorithms are proved to be O(Īµāˆ’2)\mathcal{O}\left( \varepsilon ^{-2} \right) and O(Īµāˆ’3)\mathcal{O}\left( \varepsilon ^{-3} \right) to reach an Īµ\varepsilon-stationary point, respectively. To our knowledge, they are the first two algorithms with iteration complexity guarantee for solving the two classes of minimax problems

    An Interior-Point algorithm for Nonlinear Minimax Problems

    Get PDF
    We present a primal-dual interior-point method for constrained nonlinear, discrete minimax problems where the objective functions and constraints are not necessarily convex. The algorithm uses two merit functions to ensure progress toward the points satisfying the first-order optimality conditions of the original problem. Convergence properties are described and numerical results provided.Discrete min-max, Constrained nonlinear programming, Primal-dual interior-point methods, Stepsize strategies.

    Decentralized gradient descent maximization method for composite nonconvex strongly-concave minimax problems

    Full text link
    Minimax problems have recently attracted a lot of research interests. A few efforts have been made to solve decentralized nonconvex strongly-concave (NCSC) minimax-structured optimization; however, all of them focus on smooth problems with at most a constraint on the maximization variable. In this paper, we make the first attempt on solving composite NCSC minimax problems that can have convex nonsmooth terms on both minimization and maximization variables. Our algorithm is designed based on a novel reformulation of the decentralized minimax problem that introduces a multiplier to absorb the dual consensus constraint. The removal of dual consensus constraint enables the most aggressive (i.e., local maximization instead of a gradient ascent step) dual update that leads to the benefit of taking a larger primal stepsize and better complexity results. In addition, the decoupling of the nonsmoothness and consensus on the dual variable eases the analysis of a decentralized algorithm; thus our reformulation creates a new way for interested researchers to design new (and possibly more efficient) decentralized methods on solving NCSC minimax problems. We show a global convergence result of the proposed algorithm and an iteration complexity result to produce a (near) stationary point of the reformulation. Moreover, a relation is established between the (near) stationarities of the reformulation and the original formulation. With this relation, we show that when the dual regularizer is smooth, our algorithm can have lower complexity results (with reduced dependence on a condition number) than existing ones to produce a near-stationary point of the original formulation. Numerical experiments are conducted on a distributionally robust logistic regression to demonstrate the performance of the proposed algorithm

    Minimax strategies and duality with applications in Financial Mathematics

    Get PDF
    Many topics in Actuarial and Financial Mathematics lead to Minimax or Maximin problems (risk measures optimization, ambiguous setting, robust solutions, Bayesian credibility theory, interest rate risk, etc.). However, minimax problems are usually difficult to address, since they may involve complex vector spaces or constraints. This paper presents an unified approach so as to deal with minimax convex problems. In particular, we will yield a dual problem providing necessary and sufficient optimality conditions that easily apply in practice. Both, duals and optimality conditions are significantly simplified by drawing on the representation of probability measures on convex sets by points, classic problem for Choquet integrals. Important applications in risk analysis are given.Publicad

    Doubly Smoothed GDA: Global Convergent Algorithm for Constrained Nonconvex-Nonconcave Minimax Optimization

    Full text link
    Nonconvex-nonconcave minimax optimization has received intense attention over the last decade due to its broad applications in machine learning. Unfortunately, most existing algorithms cannot be guaranteed to converge globally and even suffer from limit cycles. To address this issue, we propose a novel single-loop algorithm called doubly smoothed gradient descent ascent method (DSGDA), which naturally balances the primal and dual updates. The proposed DSGDA can get rid of limit cycles in various challenging nonconvex-nonconcave examples in the literature, including Forsaken, Bilinearly-coupled minimax, Sixth-order polynomial, and PolarGame. We further show that under an one-sided Kurdyka-\L{}ojasiewicz condition with exponent Īøāˆˆ(0,1)\theta\in(0,1) (resp. convex primal/concave dual function), DSGDA can find a game-stationary point with an iteration complexity of O(Ļµāˆ’2maxā”{2Īø,1})\mathcal{O}(\epsilon^{-2\max\{2\theta,1\}}) (resp. O(Ļµāˆ’4)\mathcal{O}(\epsilon^{-4})). These match the best results for single-loop algorithms that solve nonconvex-concave or convex-nonconcave minimax problems, or problems satisfying the rather restrictive one-sided Polyak-\L{}ojasiewicz condition. Our work demonstrates, for the first time, the possibility of having a simple and unified single-loop algorithm for solving nonconvex-nonconcave, nonconvex-concave, and convex-nonconcave minimax problems
    • ā€¦
    corecore