75,795 research outputs found

    Maximum Persistency via Iterative Relaxed Inference with Graphical Models

    Full text link
    We consider the NP-hard problem of MAP-inference for undirected discrete graphical models. We propose a polynomial time and practically efficient algorithm for finding a part of its optimal solution. Specifically, our algorithm marks some labels of the considered graphical model either as (i) optimal, meaning that they belong to all optimal solutions of the inference problem; (ii) non-optimal if they provably do not belong to any solution. With access to an exact solver of a linear programming relaxation to the MAP-inference problem, our algorithm marks the maximal possible (in a specified sense) number of labels. We also present a version of the algorithm, which has access to a suboptimal dual solver only and still can ensure the (non-)optimality for the marked labels, although the overall number of the marked labels may decrease. We propose an efficient implementation, which runs in time comparable to a single run of a suboptimal dual solver. Our method is well-scalable and shows state-of-the-art results on computational benchmarks from machine learning and computer vision.Comment: Reworked version, submitted to PAM

    Adversarial Interpretation of Bayesian Inference

    Get PDF
    We build on the optimization-centric view on Bayesian inference advocated by Knoblauch et al. (2019). Thinking about Bayesian and generalized Bayesian posteriors as the solutions to a regularized minimization problem allows us to answer an intriguing question: If minimization is the primal problem, then what is its dual? By deriving the Fenchel dual of the problem, we demonstrate that this dual corresponds to an adversarial game: In the dual space, the prior becomes the cost function for an adversary that seeks to perturb the likelihood [loss] function targeted by standard [generalized] Bayesian inference. This implies that Bayes-like procedures are adversarially robust—providing another firm theoretical foundation for their empirical performance. Our contributions are foundational, and apply to a wide-ranging set of Machine Learning methods. This includes standard Bayesian inference, generalized Bayesian and Gibbs posteriors (Bissiri et al., 2016), as well as a diverse set of other methods including Generalized Variational Inference (Knoblauch et al., 2019) and the Wasserstein Autoencoder (Tolstikhin et al., 2017)

    Generative discriminative models for multivariate inference and statistical mapping in medical imaging

    Full text link
    This paper presents a general framework for obtaining interpretable multivariate discriminative models that allow efficient statistical inference for neuroimage analysis. The framework, termed generative discriminative machine (GDM), augments discriminative models with a generative regularization term. We demonstrate that the proposed formulation can be optimized in closed form and in dual space, allowing efficient computation for high dimensional neuroimaging datasets. Furthermore, we provide an analytic estimation of the null distribution of the model parameters, which enables efficient statistical inference and p-value computation without the need for permutation testing. We compared the proposed method with both purely generative and discriminative learning methods in two large structural magnetic resonance imaging (sMRI) datasets of Alzheimer's disease (AD) (n=415) and Schizophrenia (n=853). Using the AD dataset, we demonstrated the ability of GDM to robustly handle confounding variations. Using Schizophrenia dataset, we demonstrated the ability of GDM to handle multi-site studies. Taken together, the results underline the potential of the proposed approach for neuroimaging analyses.Comment: To appear in MICCAI 2018 proceeding

    Memory-Based Dual Gaussian Processes for Sequential Learning

    Full text link
    Sequential learning with Gaussian processes (GPs) is challenging when access to past data is limited, for example, in continual and active learning. In such cases, errors can accumulate over time due to inaccuracies in the posterior, hyperparameters, and inducing points, making accurate learning challenging. Here, we present a method to keep all such errors in check using the recently proposed dual sparse variational GP. Our method enables accurate inference for generic likelihoods and improves learning by actively building and updating a memory of past data. We demonstrate its effectiveness in several applications involving Bayesian optimization, active learning, and continual learning.Comment: International Conference on Machine Learning (ICML) 202

    Local Motion Planner for Autonomous Navigation in Vineyards with a RGB-D Camera-Based Algorithm and Deep Learning Synergy

    Get PDF
    With the advent of agriculture 3.0 and 4.0, researchers are increasingly focusing on the development of innovative smart farming and precision agriculture technologies by introducing automation and robotics into the agricultural processes. Autonomous agricultural field machines have been gaining significant attention from farmers and industries to reduce costs, human workload, and required resources. Nevertheless, achieving sufficient autonomous navigation capabilities requires the simultaneous cooperation of different processes; localization, mapping, and path planning are just some of the steps that aim at providing to the machine the right set of skills to operate in semi-structured and unstructured environments. In this context, this study presents a low-cost local motion planner for autonomous navigation in vineyards based only on an RGB-D camera, low range hardware, and a dual layer control algorithm. The first algorithm exploits the disparity map and its depth representation to generate a proportional control for the robotic platform. Concurrently, a second back-up algorithm, based on representations learning and resilient to illumination variations, can take control of the machine in case of a momentaneous failure of the first block. Moreover, due to the double nature of the system, after initial training of the deep learning model with an initial dataset, the strict synergy between the two algorithms opens the possibility of exploiting new automatically labeled data, coming from the field, to extend the existing model knowledge. The machine learning algorithm has been trained and tested, using transfer learning, with acquired images during different field surveys in the North region of Italy and then optimized for on-device inference with model pruning and quantization. Finally, the overall system has been validated with a customized robot platform in the relevant environment

    Privacy Risks of Securing Machine Learning Models against Adversarial Examples

    Full text link
    The arms race between attacks and defenses for machine learning models has come to a forefront in recent years, in both the security community and the privacy community. However, one big limitation of previous research is that the security domain and the privacy domain have typically been considered separately. It is thus unclear whether the defense methods in one domain will have any unexpected impact on the other domain. In this paper, we take a step towards resolving this limitation by combining the two domains. In particular, we measure the success of membership inference attacks against six state-of-the-art defense methods that mitigate the risk of adversarial examples (i.e., evasion attacks). Membership inference attacks determine whether or not an individual data record has been part of a model's training set. The accuracy of such attacks reflects the information leakage of training algorithms about individual members of the training set. Adversarial defense methods against adversarial examples influence the model's decision boundaries such that model predictions remain unchanged for a small area around each input. However, this objective is optimized on training data. Thus, individual data records in the training set have a significant influence on robust models. This makes the models more vulnerable to inference attacks. To perform the membership inference attacks, we leverage the existing inference methods that exploit model predictions. We also propose two new inference methods that exploit structural properties of robust models on adversarially perturbed data. Our experimental evaluation demonstrates that compared with the natural training (undefended) approach, adversarial defense methods can indeed increase the target model's risk against membership inference attacks.Comment: ACM CCS 2019, code is available at https://github.com/inspire-group/privacy-vs-robustnes

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding

    Block Belief Propagation for Parameter Learning in Markov Random Fields

    Full text link
    Traditional learning methods for training Markov random fields require doing inference over all variables to compute the likelihood gradient. The iteration complexity for those methods therefore scales with the size of the graphical models. In this paper, we propose \emph{block belief propagation learning} (BBPL), which uses block-coordinate updates of approximate marginals to compute approximate gradients, removing the need to compute inference on the entire graphical model. Thus, the iteration complexity of BBPL does not scale with the size of the graphs. We prove that the method converges to the same solution as that obtained by using full inference per iteration, despite these approximations, and we empirically demonstrate its scalability improvements over standard training methods.Comment: Accepted to AAAI 201
    corecore