111 research outputs found

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Dual-Eulerian Graphs with Applications to VLSI Design

    Get PDF
    A Dual-Eulerian graph is a plane multigraph G that contains an edge list which is simultaneously an Euler tour in G and an Euler tour in the dual of G. Dual-Eulerian tours play an important role in optimizing CMOS layouts of Boolean functions. When circuits are represented by undirected multigraphs the layout area of the circuit can be optimized through finding the minimum number of disjoint dual trails that cover the graph. This paper presents an implementation of a polynomial time algorithm for determining whether or not a plane multigraph is Dual-Eulerian and for finding the Dual-Eulerian trail if it exists

    Thoughts on Barnette's Conjecture

    Full text link
    We prove a new sufficient condition for a cubic 3-connected planar graph to be Hamiltonian. This condition is most easily described as a property of the dual graph. Let GG be a planar triangulation. Then the dual GG^* is a cubic 3-connected planar graph, and GG^* is bipartite if and only if GG is Eulerian. We prove that if the vertices of GG are (improperly) coloured blue and red, such that the blue vertices cover the faces of GG, there is no blue cycle, and every red cycle contains a vertex of degree at most 4, then GG^* is Hamiltonian. This result implies the following special case of Barnette's Conjecture: if GG is an Eulerian planar triangulation, whose vertices are properly coloured blue, red and green, such that every red-green cycle contains a vertex of degree 4, then GG^* is Hamiltonian. Our final result highlights the limitations of using a proper colouring of GG as a starting point for proving Barnette's Conjecture. We also explain related results on Barnette's Conjecture that were obtained by Kelmans and for which detailed self-contained proofs have not been published.Comment: 12 pages, 7 figure

    A continuous family of partition statistics equidistributed with length

    Get PDF
    AbstractThis article investigates a remarkable generalization of the generating function that enumerates partitions by area and number of parts. This generating function is given by the infinite product ∏i⩾11/(1−tqi). We give uncountably many new combinatorial interpretations of this infinite product involving partition statistics that arose originally in the context of Hilbert schemes. We construct explicit bijections proving that all of these statistics are equidistributed with the length statistic on partitions of n. Our bijections employ various combinatorial constructions involving cylindrical lattice paths, Eulerian tours on directed multigraphs, and oriented trees

    A polynomial time algorithm for determining zero Euler–Petrie genus of an Eulerian graph

    Get PDF
    AbstractA dual-Eulerian graph is a plane graph which has an ordering defined on its edge set which forms simultaneously an Euler circuit in the graph and an Euler circuit in the dual graph. Dual-Eulerian graphs were defined and studied in the context of silicon optimization of cmos layouts. They are necessarily of low connectivity, hence may have many planar embeddings. We give a polynomial time algorithm to answer the question whether or not a planar multigraph admits an embedding which is dual-Eulerian and construct such an embedding, if it exists

    A Penrose polynomial for embedded graphs

    Get PDF
    We extend the Penrose polynomial, originally defined only for plane graphs, to graphs embedded in arbitrary surfaces. Considering this Penrose polynomial of embedded graphs leads to new identities and relations for the Penrose polynomial which can not be realized within the class of plane graphs. In particular, by exploiting connections with the transition polynomial and the ribbon group action, we find a deletion-contraction-type relation for the Penrose polynomial. We relate the Penrose polynomial of an orientable checkerboard colourable graph to the circuit partition polynomial of its medial graph and use this to find new combinatorial interpretations of the Penrose polynomial. We also show that the Penrose polynomial of a plane graph G can be expressed as a sum of chromatic polynomials of twisted duals of G. This allows us to obtain a new reformulation of the Four Colour Theorem

    The Interlace Polynomial

    Full text link
    In this paper, we survey results regarding the interlace polynomial of a graph, connections to such graph polynomials as the Martin and Tutte polynomials, and generalizations to the realms of isotropic systems and delta-matroids.Comment: 18 pages, 5 figures, to appear as a chapter in: Graph Polynomials, edited by M. Dehmer et al., CRC Press/Taylor & Francis Group, LL

    Random cubic planar graphs converge to the Brownian sphere

    Full text link
    In this paper, the scaling limit of random connected cubic planar graphs (respectively multigraphs) is shown to be the Brownian sphere. The proof consists in essentially two main steps. First, thanks to the known decomposition of cubic planar graphs into their 3-connected components, the metric structure of a random cubic planar graph is shown to be well approximated by its unique 3-connected component of linear size, with modified distances. Then, Whitney's theorem ensures that a 3-connected cubic planar graph is the dual of a simple triangulation, for which it is known that the scaling limit is the Brownian sphere. Curien and Le Gall have recently developed a framework to study the modification of distances in general triangulations and in their dual. By extending this framework to simple triangulations, it is shown that 3-connected cubic planar graphs with modified distances converge jointly with their dual triangulation to the Brownian sphere.Comment: 55 page
    corecore