1,809 research outputs found

    How Generative Adversarial Networks and Their Variants Work: An Overview

    Full text link
    Generative Adversarial Networks (GAN) have received wide attention in the machine learning field for their potential to learn high-dimensional, complex real data distribution. Specifically, they do not rely on any assumptions about the distribution and can generate real-like samples from latent space in a simple manner. This powerful property leads GAN to be applied to various applications such as image synthesis, image attribute editing, image translation, domain adaptation and other academic fields. In this paper, we aim to discuss the details of GAN for those readers who are familiar with, but do not comprehend GAN deeply or who wish to view GAN from various perspectives. In addition, we explain how GAN operates and the fundamental meaning of various objective functions that have been suggested recently. We then focus on how the GAN can be combined with an autoencoder framework. Finally, we enumerate the GAN variants that are applied to various tasks and other fields for those who are interested in exploiting GAN for their research.Comment: 41 pages, 16 figures, Published in ACM Computing Surveys (CSUR

    Towards universal neural nets: Gibbs machines and ACE

    Full text link
    We study from a physics viewpoint a class of generative neural nets, Gibbs machines, designed for gradual learning. While including variational auto-encoders, they offer a broader universal platform for incrementally adding newly learned features, including physical symmetries. Their direct connection to statistical physics and information geometry is established. A variational Pythagorean theorem justifies invoking the exponential/Gibbs class of probabilities for creating brand new objects. Combining these nets with classifiers, gives rise to a brand of universal generative neural nets - stochastic auto-classifier-encoders (ACE). ACE have state-of-the-art performance in their class, both for classification and density estimation for the MNIST data set.Comment: v5: added thermodynamic identities and variational error estimation; expanded reference

    Unified Probabilistic Deep Continual Learning through Generative Replay and Open Set Recognition

    Full text link
    We introduce a probabilistic approach to unify open set recognition with the prevention of catastrophic forgetting in deep continual learning, based on variational Bayesian inference. Our single model combines a joint probabilistic encoder with a generative model and a linear classifier that get shared across sequentially arriving tasks. In order to successfully distinguish unseen unknown data from trained known tasks, we propose to bound the class specific approximate posterior by fitting regions of high density on the basis of correctly classified data points. These bounds are further used to significantly alleviate catastrophic forgetting by avoiding samples from low density areas in generative replay. Our approach requires neither storing of old, nor upfront knowledge of future data, and is empirically validated on visual and audio tasks in class incremental, as well as cross-dataset scenarios across modalities

    Preventing Posterior Collapse with Levenshtein Variational Autoencoder

    Full text link
    Variational autoencoders (VAEs) are a standard framework for inducing latent variable models that have been shown effective in learning text representations as well as in text generation. The key challenge with using VAEs is the {\it posterior collapse} problem: learning tends to converge to trivial solutions where the generators ignore latent variables. In our Levenstein VAE, we propose to replace the evidence lower bound (ELBO) with a new objective which is simple to optimize and prevents posterior collapse. Intuitively, it corresponds to generating a sequence from the autoencoder and encouraging the model to predict an optimal continuation according to the Levenshtein distance (LD) with the reference sentence at each time step in the generated sequence. We motivate the method from the probabilistic perspective by showing that it is closely related to optimizing a bound on the intractable Kullback-Leibler divergence of an LD-based kernel density estimator from the model distribution. With this objective, any generator disregarding latent variables will incur large penalties and hence posterior collapse does not happen. We relate our approach to policy distillation \cite{RossGB11} and dynamic oracles \cite{GoldbergN12}. By considering Yelp and SNLI benchmarks, we show that Levenstein VAE produces more informative latent representations than alternative approaches to preventing posterior collapse

    Efficient Large-Scale Domain Classification with Personalized Attention

    Full text link
    In this paper, we explore the task of mapping spoken language utterances to one of thousands of natural language understanding domains in intelligent personal digital assistants (IPDAs). This scenario is observed for many mainstream IPDAs in industry that allow third parties to develop thousands of new domains to augment built-in ones to rapidly increase domain coverage and overall IPDA capabilities. We propose a scalable neural model architecture with a shared encoder, a novel attention mechanism that incorporates personalization information and domain-specific classifiers that solves the problem efficiently. Our architecture is designed to efficiently accommodate new domains that appear in-between full model retraining cycles with a rapid bootstrapping mechanism two orders of magnitude faster than retraining. We account for practical constraints in real-time production systems, and design to minimize memory footprint and runtime latency. We demonstrate that incorporating personalization results in significantly more accurate domain classification in the setting with thousands of overlapping domains.Comment: Accepted to ACL 201

    ConveRT: Efficient and Accurate Conversational Representations from Transformers

    Full text link
    General-purpose pretrained sentence encoders such as BERT are not ideal for real-world conversational AI applications; they are computationally heavy, slow, and expensive to train. We propose ConveRT (Conversational Representations from Transformers), a pretraining framework for conversational tasks satisfying all the following requirements: it is effective, affordable, and quick to train. We pretrain using a retrieval-based response selection task, effectively leveraging quantization and subword-level parameterization in the dual encoder to build a lightweight memory- and energy-efficient model. We show that ConveRT achieves state-of-the-art performance across widely established response selection tasks. We also demonstrate that the use of extended dialog history as context yields further performance gains. Finally, we show that pretrained representations from the proposed encoder can be transferred to the intent classification task, yielding strong results across three diverse data sets. ConveRT trains substantially faster than standard sentence encoders or previous state-of-the-art dual encoders. With its reduced size and superior performance, we believe this model promises wider portability and scalability for Conversational AI applications

    Student's t-Generative Adversarial Networks

    Full text link
    Generative Adversarial Networks (GANs) have a great performance in image generation, but they need a large scale of data to train the entire framework, and often result in nonsensical results. We propose a new method referring to conditional GAN, which equipments the latent noise with mixture of Student's t-distribution with attention mechanism in addition to class information. Student's t-distribution has long tails that can provide more diversity to the latent noise. Meanwhile, the discriminator in our model implements two tasks simultaneously, judging whether the images come from the true data distribution, and identifying the class of each generated images. The parameters of the mixture model can be learned along with those of GANs. Moreover, we mathematically prove that any multivariate Student's t-distribution can be obtained by a linear transformation of a normal multivariate Student's t-distribution. Experiments comparing the proposed method with typical GAN, DeliGAN and DCGAN indicate that, our method has a great performance on generating diverse and legible objects with limited data

    MINE: Mutual Information Neural Estimation

    Full text link
    We argue that the estimation of mutual information between high dimensional continuous random variables can be achieved by gradient descent over neural networks. We present a Mutual Information Neural Estimator (MINE) that is linearly scalable in dimensionality as well as in sample size, trainable through back-prop, and strongly consistent. We present a handful of applications on which MINE can be used to minimize or maximize mutual information. We apply MINE to improve adversarially trained generative models. We also use MINE to implement Information Bottleneck, applying it to supervised classification; our results demonstrate substantial improvement in flexibility and performance in these settings.Comment: 19 pages, 6 figure

    An Introduction to Image Synthesis with Generative Adversarial Nets

    Full text link
    There has been a drastic growth of research in Generative Adversarial Nets (GANs) in the past few years. Proposed in 2014, GAN has been applied to various applications such as computer vision and natural language processing, and achieves impressive performance. Among the many applications of GAN, image synthesis is the most well-studied one, and research in this area has already demonstrated the great potential of using GAN in image synthesis. In this paper, we provide a taxonomy of methods used in image synthesis, review different models for text-to-image synthesis and image-to-image translation, and discuss some evaluation metrics as well as possible future research directions in image synthesis with GAN

    Generative Creativity: Adversarial Learning for Bionic Design

    Full text link
    Bionic design refers to an approach of generative creativity in which a target object (e.g. a floor lamp) is designed to contain features of biological source objects (e.g. flowers), resulting in creative biologically-inspired design. In this work, we attempt to model the process of shape-oriented bionic design as follows: given an input image of a design target object, the model generates images that 1) maintain shape features of the input design target image, 2) contain shape features of images from the specified biological source domain, 3) are plausible and diverse. We propose DesignGAN, a novel unsupervised deep generative approach to realising bionic design. Specifically, we employ a conditional Generative Adversarial Networks architecture with several designated losses (an adversarial loss, a regression loss, a cycle loss and a latent loss) that respectively constrict our model to meet the corresponding aforementioned requirements of bionic design modelling. We perform qualitative and quantitative experiments to evaluate our method, and demonstrate that our proposed approach successfully generates creative images of bionic design
    • …
    corecore