17 research outputs found

    Efficient Implementation of Elliptic Curve Cryptography on FPGAs

    Get PDF
    This work presents the design strategies of an FPGA-based elliptic curve co-processor. Elliptic curve cryptography is an important topic in cryptography due to its relatively short key length and higher efficiency as compared to other well-known public key crypto-systems like RSA. The most important contributions of this work are: - Analyzing how different representations of finite fields and points on elliptic curves effect the performance of an elliptic curve co-processor and implementing a high performance co-processor. - Proposing a novel dynamic programming approach to find the optimum combination of different recursive polynomial multiplication methods. Here optimum means the method which has the smallest number of bit operations. - Designing a new normal-basis multiplier which is based on polynomial multipliers. The most important part of this multiplier is a circuit of size O(nlogn)O(n \log n) for changing the representation between polynomial and normal basis

    Normal and optimal normal bases in finite fields

    Get PDF
    Arithmetic operations in finite fields have many applications in cryptography, coding theory, and computer algebra. The realization of these operations can often be made more efficient by the normal basis representation of the field elements. This thesis is aimed at giving a survey of recent results concerning normal bases and efficient ways of multiplication, inversion, and exponentiation when the normal basis representation is used

    Computing in Algebraic Closures of Finite Fields

    Get PDF
    We present algorithms to construct and perform computations in algebraic closures of finite fields. Inspired by algorithms for constructing irreducible polynomials, our approach for constructing closures consists of two phases; First, extension towers of prime power degree are built, and then they are glued together using composita techniques. To be able to move elements around in the closure we give efficient algorithms for computing isomorphisms and embeddings. In most cases, our algorithms which are based on polynomial arithmetic, rather than linear algebra, have quasi-linear complexity

    High speed world level finite field multipliers in F2m

    Get PDF
    Finite fields have important applications in number theory, algebraic geometry, Galois theory, cryptography, and coding theory. Recently, the use of finite field arithmetic in the area of cryptography has increasingly gained importance. Elliptic curve and El-Gamal cryptosystems are two important examples of public key cryptosystems widely used today based on finite field arithmetic. Research in this area is moving toward finding new architectures to implement the arithmetic operations more efficiently. Two types of finite fields are commonly used in practice, prime field GF(p) and the binary extension field GF(2 m). The binary extension fields are attractive for high speed cryptography applications since they are suitable for hardware implementations. Hardware implementation of finite field multipliers can usually be categorized into three categories: bit-serial, bit-parallel, and word-level architectures. The word-level multipliers provide architectural flexibility and trade-off between the performance and limitations of VLSI implementation and I/O ports, thus it is of more practical significance. In this work, different word level architectures for multiplication using binary field are proposed. It has been shown that the proposed architectures are more efficient compared to similar proposals considering area/delay complexities as a measure of performance. Practical size multipliers for cryptography applications have been realized in hardware using FPGA or standard CMOS technology, to similar proposals considering area/delay complexities as a measure of performance. Practical size multipliers for cryptography applications have been realized in hardware using FPGA or standard CMOS technology. Also different VLSI implementations for multipliers were explored which resulted in more efficient implementations for some of the regular architectures. The new implementations use a simple module designed in domino logic as the main building block for the multiplier. Significant speed improvements was achieved designing practical size multipliers using the proposed methodology

    Hardware processors for pairing-based cryptography

    Get PDF
    Bilinear pairings can be used to construct cryptographic systems with very desirable properties. A pairing performs a mapping on members of groups on elliptic and genus 2 hyperelliptic curves to an extension of the finite field on which the curves are defined. The finite fields must, however, be large to ensure adequate security. The complicated group structure of the curves and the expensive field operations result in time consuming computations that are an impediment to the practicality of pairing-based systems. The Tate pairing can be computed efficiently using the ɳT method. Hardware architectures can be used to accelerate the required operations by exploiting the parallelism inherent to the algorithmic and finite field calculations. The Tate pairing can be performed on elliptic curves of characteristic 2 and 3 and on genus 2 hyperelliptic curves of characteristic 2. Curve selection is dependent on several factors including desired computational speed, the area constraints of the target device and the required security level. In this thesis, custom hardware processors for the acceleration of the Tate pairing are presented and implemented on an FPGA. The underlying hardware architectures are designed with care to exploit available parallelism while ensuring resource efficiency. The characteristic 2 elliptic curve processor contains novel units that return a pairing result in a very low number of clock cycles. Despite the more complicated computational algorithm, the speed of the genus 2 processor is comparable. Pairing computation on each of these curves can be appealing in applications with various attributes. A flexible processor that can perform pairing computation on elliptic curves of characteristic 2 and 3 has also been designed. An integrated hardware/software design and verification environment has been developed. This system automates the procedures required for robust processor creation and enables the rapid provision of solutions for a wide range of cryptographic applications

    Hardware Implementations of the WG-16 Stream Cipher with Composite Field Arithmetic

    Get PDF
    The WG stream cipher family consists of stream ciphers based on the Welch-Gong (WG) transformations that are used as a nonlinear filter applied to the output of a linear feedback shift register (LFSR). The aim of this thesis is an exploration of the design space of the WG-16 stream cipher. Five different representations of the field elements were analyzed, namely the polynomial basis representation, the normal basis representation and three isomorphic tower field constructions of F216: F(((22)2)2)2, F(24)4 and F(28)2. Each design option begins with an in-depth description of different field constructions and their impact on the top-level WG transformation circuit. Normal basis representation of elements for each level of the tower was chosen for field constructions F(((22)2)2)2 and F(24)4, and a mixed basis, with polynomial basis for the lower and normal basis for the higher level of the tower for F(28)2. Representation of field elements affects the field arithmetic, which in turn affects the entire design. Targeting high throughput, pipelined architectures were developed, and pipelining was based on the particular field construction: each extension over the prime field offers a new pipelining possibility. Pipelining at a lower level of the tower field reduces the clock period. Most flexible pipelining options are possible for F(((22)2)2)2, a highly regular construction, which permits an algebraic optimization of the WG transformation resulting in two multiplications being removed. High speed, achieved by adequate pipelining granularity, and smaller area due to removed multipliers deem the F(((22)2)2)2 to be the most suitable field construction for the implementation of WG-16. The best WG-16 modules achieve a throughput of 222 Mbit/s with 476 slices used on the Xilinx Spartan-6 FPGA device xc6slx9 (using Xilinx Synthesis Tool (XST) for synthesis and ISE for implementation [47]) and a throughput of 529 Mbit/s with area cost of 12215 GEs for ASIC implementation, using the 65 nm CMOS technology (using Synopsys Design Compiler for synthesis [45] and Cadence SoC Encounter to complete the Place-and-Route phase)

    Part I:

    Get PDF

    Efficient Algorithms for Solving Structured Eigenvalue Problems Arising in the Description of Electronic Excitations

    Get PDF
    Matrices arising in linear-response time-dependent density functional theory and many-body perturbation theory, in particular in the Bethe-Salpeter approach, show a 2 × 2 block structure. The motivation to devise new algorithms, instead of using general purpose eigenvalue solvers, comes from the need to solve large problems on high performance computers. This requires parallelizable and communication-avoiding algorithms and implementations. We point out various novel directions for diagonalizing structured matrices. These include the solution of skew-symmetric eigenvalue problems in ELPA, as well as structure preserving spectral divide-and-conquer schemes employing generalized polar decompostions
    corecore