2,485 research outputs found

    A Four-stage Power and Area Efficient OTA with 30 × (400pf – 12nf) Capacitive Load Drive Range

    Get PDF
    Multistage operational transconductance amplifier (OTA) has been a major research focus as a solution to high DC Gain high Gain Bandwidth and wide voltage swing requirement on sub-micron devices. These system requirements, in addition to ultra-large capacitive load drivability (nF-range load capacitor), are useful in applications including LCD drivers, low dropout (LDO) linear regulators, headphone drivers, etc. The major drawback of multistage OTAs is the stability concerns since each added stage introduces low frequency poles. Numerous compensation schemes for three stage OTAs have been proposed in the past decade with only a few four stage OTA in literature. The proposed design is a four stage OTA which uses an active zero block (AZB) to provide left half plane (LHP) zero to help with phase degradation. AZB is embedded in the second stage ensuring reuse of existing block hence providing area and power savings. This design also uses single miller capacitor in the outer loop which ensures improved speed performance with minimal area overhead. A very reliable slew helper is implemented in this design to help with the large signal performance. The slew helper is only operational in the events slewing and does not affect the small signal performance. The proposed design achieves a DC gain of 114 dB, GBW > 1.77MHz and PM > 46.9⁰ for capacitive load ranging from 400pF–12nF (30x) which is the highest recorded range in literature for these type of compensation. It does this by consuming a total power of 143.5µW and an area of 0.007mm^2

    A Low-Power Capacitive Transimpedance D/A Converter

    Get PDF
    This thesis proposes a new low-power and low-area DAC for single-slope ADCs used in CMOS image sensors. With increase in resolution requirements for ADCs, conventional DAC architectures suffered the limitation of either large area or high power consumption with higher resolution scaling. Thus, the proposed capacitive transimpedance amplifier DAC (CTIA DAC) could solve this by offering the resolution requirement required without taking a hit on the area or power budget. The thesis has been structured in the following manner: The first chapter introduces image sensors in general and talks about progression through different image sensors and pixel architectures that have been used through the years. It also explains the operation of a CMOS image sensor from a paper published from Sony on high-speed image sensors. The second chapter presents the importance and role of DACs in CMOS image sensors and briefly explains a few commonly used DAC architectures in image sensors. It explains the advantages and disadvantages of present architectures and leads the discussion towards the development of the proposed DAC. The third chapter gives an overview of the CTIA DAC and explains the working of the different circuit blocks that are used to implement the proposed DAC. Chapter Four explains the design approach for the blocks explained in Chapter Three. It presents the critical design choices that were made for overall performance of the DAC. Results of individual blocks and the DAC as a whole are presented and compared against other recently published DAC papers. The final chapter summarizes some key results of the design and talks about the scope for future work and improvement

    Calibration techniques in nyquist A/D converters

    Get PDF
    In modern systems signal processing is performed in the digital domain. Contrary to analog circuits, digital signal processing offers more robustness, programmability, error correction and storage possibility. The trend to shift the A/D converter towards the input of the system requires A/D converters with more dynamic range and higher sampling speeds. This puts extreme demands on the A/D converter and potentially increases the power consumption. Calibration Techniques in Nyquist A/D Converters analyses different A/D-converter architectures with an emphasis on the maximum achievable power efficiency. It is shown that in order to achieve high speed and high accuracy at high power efficiency, calibration is required. Calibration reduces the overall power consumption by using the available digital processing capability to relax the demands on critical power hungry analog components. Several calibration techniques are analyzed. The calibration techniques presented in this book are applicable to other analog-to-digital systems, such as those applied in integrated receivers. Further refinements will allow using analog components with less accuracy, which will then be compensated by digital signal processing. The presented methods allow implementing this without introducing a speed or power penalty

    Energy-Efficient Amplifiers Based on Quasi-Floating Gate Techniques

    Get PDF
    Energy efficiency is a key requirement in the design of amplifiers for modern wireless applications. The use of quasi-floating gate (QFG) transistors is a very convenient approach to achieve such energy efficiency. We illustrate different QFG circuit design techniques aimed to implement low-voltage, energy-efficient class AB amplifiers. A new super class AB QFG amplifier is presented as a design example, including some of the techniques described. The amplifier has been fabricated in a 130 nm CMOS test chip prototype. Measurement results confirm that low-voltage, ultra-low-power amplifiers can be designed, preserving, at the same time, excellent small-signal and large-signal performance.Agencia Estatal de Investigación PID2019-107258RB-C32Unión Europea PID2019-107258RB-C3

    Design and implementation of low power multistage amplifiers and high frequency distributed amplifiers

    Get PDF
    The advancement in integrated circuit (IC) technology has resulted in scaling down of device sizes and supply voltages without proportionally scaling down the threshold voltage of the MOS transistor. This, coupled with the increasing demand for low power, portable, battery-operated electronic devices, like mobile phones, and laptops provides the impetus for further research towards achieving higher integration on chip and low power consumption. High gain, wide bandwidth amplifiers driving large capacitive loads serve as error amplifiers in low-voltage low drop out regulators in portable devices. This demands low power, low area, and frequency-compensated multistage amplifiers capable of driving large capacitive loads. The first part of the research proposes two power and area efficient frequency compensation schemes: Single Miller Capacitor Compensation (SMC) and Single Miller Capacitor Feedforward Compensation (SMFFC), for multistage amplifiers driving large capacitive loads. The designs have been implemented in a 0.5??m CMOS process. Experimental results show that the SMC and SMFFC amplifiers achieve gain-bandwidth products of 4.6MHz and 9MHz, respectively, when driving a load of 25Kδ/120pF. Each amplifier operates from a ??1V supply, dissipates less than 0.42mW of power and occupies less than 0.02mm2 of silicon area. The inception of the latest IEEE standard like IEEE 802.16 wireless metropolitan area network (WMAN) for 10 -66 GHz range demands wide band amplifiers operating at high frequencies to serve as front-end circuits (e.g. low noise amplifier) in such receiver architectures. Devices used in cascade (multistage amplifiers) can be used to increase the gain but it is achieved at an expense of bandwidth. Distributing the capacitance associated with the input and the output of the device over a ladder structure (which is periodic), rather than considering it to be lumped can achieve an extension of bandwidth without sacrificing gain. This concept which is also known as distributed amplification has been explored in the second part of the research. This work proposes certain guidelines for the design of distributed low noise amplifiers operating at very high frequencies. Noise analysis of the distributed amplifier with real transmission lines is introduced. The analysis for gain and noise figure is verified with simulation results from a 5-stage distributed amplifier implemented in a 0.18??m CMOS process

    Energy-efficient amplifiers based on quasi-floating gate techniques

    Get PDF
    Energy efficiency is a key requirement in the design of amplifiers for modern wireless applications. The use of quasi-floating gate (QFG) transistors is a very convenient approach to achieve such energy efficiency. We illustrate different QFG circuit design techniques aimed to implement low-voltage energy-efficient class AB amplifiers. A new super class AB QFG amplifier is presented as a design example including some of the techniques described. The amplifier has been fabricated in a 130 nm CMOS test chip prototype. Measurement results confirm that low-voltage ultra low power amplifiers can be designed preserving at the same time excellent small-signal and large-signal performance.This research was funded by AEI/FEDER, grant number PID2019-107258RB-C32

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces

    Interface Circuits for Microsensor Integrated Systems

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Recent advances in sensing technologies, especially those for Microsensor Integrated Systems, have led to several new commercial applications. Among these, low voltage and low power circuit architectures have gained growing attention, being suitable for portable long battery life devices. The aim is to improve the performances of actual interface circuits and systems, both in terms of voltage mode and current mode, in order to overcome the potential problems due to technology scaling and different technology integrations. Related problems, especially those concerning parasitics, lead to a severe interface design attention, especially concerning the analog front-end and novel and smart architecture must be explored and tested, both at simulation and prototype level. Moreover, the growing demand for autonomous systems gets even harder the interface design due to the need of energy-aware cost-effective circuit interfaces integrating, where possible, energy harvesting solutions. The objective of this Special Issue is to explore the potential solutions to overcome actual limitations in sensor interface circuits and systems, especially those for low voltage and low power Microsensor Integrated Systems. The present Special Issue aims to present and highlight the advances and the latest novel and emergent results on this topic, showing best practices, implementations and applications. The Guest Editors invite to submit original research contributions dealing with sensor interfacing related to this specific topic. Additionally, application oriented and review papers are encouraged.
    corecore