1,003 research outputs found

    Indexing techniques for fingerprint and iris databases

    Get PDF
    This thesis addresses the problem of biometric indexing in the context of fingerprint and iris databases. In large scale authentication system, the goal is to determine the identity of a subject from a large set of identities. Indexing is a technique to reduce the number of candidate identities to be considered by the identification algorithm. The fingerprint indexing technique (for closed set identification) proposed in this thesis is based on a combination of minutiae and ridge features. Experiments conducted on the FVC2002 and FVC2004 databases indicate that the inclusion of ridge features aids in enhancing indexing performance. The thesis also proposes three techniques for iris indexing (for closed set identification). The first technique is based on iriscodes. The second technique utilizes local binary patterns in the iris texture. The third technique analyzes the iris texture based on a pixel-level difference histogram. The ability to perform indexing at the texture level avoids the computational complexity involved in encoding and is, therefore, more attractive for iris indexing. Experiments on the CASIA 3.0 database suggest the potential of these schemes to index large-scale iris databases

    Facilitating sensor interoperability and incorporating quality in fingerprint matching systems

    Get PDF
    This thesis addresses the issues of sensor interoperability and quality in the context of fingerprints and makes a three-fold contribution. The first contribution is a method to facilitate fingerprint sensor interoperability that involves the comparison of fingerprint images originating from multiple sensors. The proposed technique models the relationship between images acquired by two different sensors using a Thin Plate Spline (TPS) function. Such a calibration model is observed to enhance the inter-sensor matching performance on the MSU dataset containing images from optical and capacitive sensors. Experiments indicate that the proposed calibration scheme improves the inter-sensor Genuine Accept Rate (GAR) by 35% to 40% at a False Accept Rate (FAR) of 0.01%. The second contribution is a technique to incorporate the local image quality information in the fingerprint matching process. Experiments on the FVC 2002 and 2004 databases suggest the potential of this scheme to improve the matching performance of a generic fingerprint recognition system. The final contribution of this thesis is a method for classifying fingerprint images into 3 categories: good, dry and smudged. Such a categorization would assist in invoking different image processing or matching schemes based on the nature of the input fingerprint image. A classification rate of 97.45% is obtained on a subset of the FVC 2004 DB1 database

    Distributed authentication to preserve privacy through smart card based biometric matching

    Get PDF
    Bibliography: pages 135-139.This thesis focuses on privacy concerns, specifically those relating to the storage and use of biometrics. These concerns result from the fact that biometric information is unique. This uniqueness makes the biometric a very strong identifier increasing the possibility that it could be used to monitor an individual's activities. An expert can extract considerable information from a biometric scan, ranging from the age or gender to whether the individual has certain diseases

    Inkjet-Printed Carbon Nanotubes for Fabricating a Spoof Fingerprint on Paper.

    Get PDF
    A spoof fingerprint was fabricated on paper and applied for a spoofing attack to unlock a smartphone on which a capacitive array of sensors had been embedded with a fingerprint recognition algorithm. Using an inkjet printer with an ink made of carbon nanotubes (CNTs), we printed a spoof fingerprint having an electrical and geometric pattern of ridges and furrows comparable to that of the real fingerprint. With this printed spoof fingerprint, we were able to unlock a smartphone successfully; this was due to the good quality of the printed CNT material, which provided electrical conductivities and structural patterns similar to those of the real fingerprint. This result confirms that inkjet-printing CNTs to fabricate a spoof fingerprint on paper is an easy, simple spoofing route from the real fingerprint and suggests a new method for outputting the physical ridges and furrows on a two-dimensional plane

    Feature Fusion for Fingerprint Liveness Detection

    Get PDF
    For decades, fingerprints have been the most widely used biometric trait in identity recognition systems, thanks to their natural uniqueness, even in rare cases such as identical twins. Recently, we witnessed a growth in the use of fingerprint-based recognition systems in a large variety of devices and applications. This, as a consequence, increased the benefits for offenders capable of attacking these systems. One of the main issues with the current fingerprint authentication systems is that, even though they are quite accurate in terms of identity verification, they can be easily spoofed by presenting to the input sensor an artificial replica of the fingertip skin’s ridge-valley patterns. Due to the criticality of this threat, it is crucial to develop countermeasure methods capable of facing and preventing these kind of attacks. The most effective counter–spoofing methods are those trying to distinguish between a "live" and a "fake" fingerprint before it is actually submitted to the recognition system. According to the technology used, these methods are mainly divided into hardware and software-based systems. Hardware-based methods rely on extra sensors to gain more pieces of information regarding the vitality of the fingerprint owner. On the contrary, software-based methods merely rely on analyzing the fingerprint images acquired by the scanner. Software-based methods can then be further divided into dynamic, aimed at analyzing sequences of images to capture those vital signs typical of a real fingerprint, and static, which process a single fingerprint impression. Among these different approaches, static software-based methods come with three main benefits. First, they are cheaper, since they do not require the deployment of any additional sensor to perform liveness detection. Second, they are faster since the information they require is extracted from the same input image acquired for the identification task. Third, they are potentially capable of tackling novel forms of attack through an update of the software. The interest in this type of counter–spoofing methods is at the basis of this dissertation, which addresses the fingerprint liveness detection under a peculiar perspective, which stems from the following consideration. Generally speaking, this problem has been tackled in the literature with many different approaches. Most of them are based on first identifying the most suitable image features for the problem in analysis and, then, into developing some classification system based on them. In particular, most of the published methods rely on a single type of feature to perform this task. Each of this individual features can be more or less discriminative and often highlights some peculiar characteristics of the data in analysis, often complementary with that of other feature. Thus, one possible idea to improve the classification accuracy is to find effective ways to combine them, in order to mutually exploit their individual strengths and soften, at the same time, their weakness. However, such a "multi-view" approach has been relatively overlooked in the literature. Based on the latter observation, the first part of this work attempts to investigate proper feature fusion methods capable of improving the generalization and robustness of fingerprint liveness detection systems and enhance their classification strength. Then, in the second part, it approaches the feature fusion method in a different way, that is by first dividing the fingerprint image into smaller parts, then extracting an evidence about the liveness of each of these patches and, finally, combining all these pieces of information in order to take the final classification decision. The different approaches have been thoroughly analyzed and assessed by comparing their results (on a large number of datasets and using the same experimental protocol) with that of other works in the literature. The experimental results discussed in this dissertation show that the proposed approaches are capable of obtaining state–of–the–art results, thus demonstrating their effectiveness

    A literature analysis examining the potential suitability of terahertz imaging to detect friction ridge detail preserved in the imprimatura layer of oil-based, painted artwork

    Full text link
    This literature analysis examines terahertz (THz) imaging as a non-invasive tool for the imaging of friction ridge detail from the first painted layer (imprimatura) in multilayered painted works of art. The paintings of interest are those created utilizing techniques developed during the Renaissance and still in use today. The goal of analysis serves to answer two questions. First, can THz radiation penetrate paint layers covering the imprimatura to reveal friction ridge information? Secondly, can the this technology recover friction ridge detail such that the fine details are sufficiently resolved to provide images suitable for comparison and identification purposes. If a comparison standard exists, recovered friction ridge detail from this layer can be used to establish linkages to an artist or between works of art. Further, it can be added to other scientific methods currently employed to assist with the authentication efforts of unattributed paintings. Flanked by the microwave and far-infrared edges, THz straddles the electronic and optic perspectives of the electromagnetic spectrum. As a consequence, this range is imparted with unique and useful properties. Able to penetrate and image through many opaque materials, its non-ionizing radiation is an ideal non-destructive technique that provides visual information from a painting’s sub-strata. Imaging is possible where refractive index differences exist between different paint layers. Though it is impossible, at present, to determine when a fingerprint was deposited, one can infer approximately when a print was created if it is recovered from the imprimatura layer of a painting, and can be subsequently attributed to a known source. Fingerprints are unique, a person is only able to deposit prints while their physical body is intact and thus, in some cases, the multiple layer process some artists use in their work may be used to the examiner’s advantage. Impressions of friction ridge detail have been recorded on receiving surfaces from human hands throughout time (and have also been discovered in works of art). Yet, the potential to associate those recorded impressions to a specific individual was only realized just over one hundred years ago. Much like the use of friction ridge skin, the relatively recently discovered THz range is now better understood; its tremendous potential unlocked by growing research and technology designed to exploit its unique properties

    Prevalence of Pores in Latent Fingerprints

    Get PDF
    Of the many biometric traits recognized today, fingerprints are the most prevalent and familiar. The analysis of fingerprints involves level 1, level 2, and/or level 3 detail in the identification of a potential match. Traditionally, fingerprint matching was completely performed by hand, utilizing the ACE-V method. Thanks to the development of rapidly evolving technology, fingerprint matching has become an automated procedure through the use of fingerprint matching algorithms. In the literature, there has been an increase in the interest of developing Automatic Fingerprint Identification System (AFIS) algorithms that include level 3 details in the matching process. These studies have utilized live scanned and/or inked fingerprints, rather than latent fingerprints. However, practical use of AFIS algorithms involves unknown fingerprints, such as those collected at crime scenes, which are often latent in nature. In addition, research has also found that there is a wide variety in size and shape of pore structure, making automatic detection of pores difficult. The resultant quality of latent fingerprints is subject to various factors at the time of deposition, such as the deposition surface, environmental conditions, and composition of the fingerprint itself. Consequently, these factors, in addition to the inherent variance in pore structure, may very well affect the observance and use of level 3 details within a fingerprint. If the prevalence of pores proves to be unreliable and inconsistent in latent fingerprints, the push for including level 3 detail in the AFIS matching process may all be for nothing. For this reason, the effects of latent fingerprint deposition factors on pore identification needs to be considered and currently appears to be greatly under studied. In effort to begin to fill this gap in the current research, newly deposited latent fingerprints were collected and developed using both black fingerprint powder and cyanoacrylate fuming. Developed fingerprints were subsequently imaged via digital scan or digital camera, and enhanced using either Image J or Adobe\textsuperscript{\textregistered} Photoshop\textsuperscript{\textregistered}. Following image enhancement, pores were manually identified and marked using the Federal Bureau of Investigation (FBI) developed Universal Latent Workstation (ULW) software. Qualitative assessment of the 633 fingerprints collected resulted in 380 usable fingerprints for the remainder of the study. Observations regarding pore count within the replicate fingerprint sets indicated that total pore count/presence was not consistent. The Mann Whitney U test indicated that neither development method, black fingerprint powder nor cyanoacrylate fuming, produced pore data any better or worse than the other. Lastly, assessment of pore location resulted in a greater number of similarity scores being lower than the established threshold, indicating that pore location is not as easily assessed nor interpreted as hoped

    Error propagation in pattern recognition systems: Impact of quality on fingerprint categorization

    Get PDF
    The aspect of quality in pattern classification has recently been explored in the context of biometric identification and authentication systems. The results presented in the literature indicate that incorporating information about quality of the input pattern leads to improved classification performance. The quality itself, however, can be defined in a number of ways, and its role in the various stages of pattern classification is often ambiguous or ad hoc. In this dissertation a more systematic approach to the incorporation of localized quality metrics into the pattern recognition process is developed for the specific task of fingerprint categorization. Quality is defined not as an intrinsic property of the image, but rather in terms of a set of defects introduced to it. A number of fingerprint images have been examined and the important quality defects have been identified and modeled in a mathematically tractable way. The models are flexible and can be used to generate synthetic images that can facilitate algorithm development and large scale, less time consuming performance testing. The effect of quality defects on various stages of the fingerprint recognition process are examined both analytically and empirically. For these defect models, it is shown that the uncertainty of parameter estimates, i.e. extracted fingerprint features, is the key quantity that can be calculated and propagated forward through the stages of the fingerprint classification process. Modified image processing techniques that explicitly utilize local quality metrics in the extraction of features useful in fingerprint classification, such as ridge orientation flow field, are presented and their performance is investigated

    Statistical Data Analyses of Trace Chemical, Biochemical, and Physical Analytical Signatures

    Full text link
    • …
    corecore