2,547 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Performance Comparison of Data Sampling Techniques to Handle Imbalanced Class on Prediction of Compound-Protein Interaction

    Get PDF
    The prediction of Compound-Protein Interactions (CPI) is an essential step in the drug-target analysis for developing new drugs as well as for drug repositioning. One challenging issue in this field is that commonly there are more numbers of non-interacting compound-protein pairs than interacting pairs. This problem causes bias, which may degrade the prediction of CPI. Besides, currently, there is not much research on CPI prediction that compares data sampling techniques to handle the class imbalance problem. To address this issue, we compare four data sampling techniques, namely Random Under-sampling (RUS), Combination of Over-Under-sampling (COUS), Synthetic Minority Over-sampling Technique (SMOTE), and Tomek Link (T-Link). The benchmark CPI data: Nuclear Receptor and G-Protein Coupled Receptor (GPCR) are used to test these techniques. Area Under Curve (AUC) applied to evaluate the CPI prediction performance of each technique. Results show that the AUC values for RUS, COUS, SMOTE, and T-Link are 0.75, 0.77, 0.85 and 0.79 respectively on Nuclear Receptor data and 0.70, 0.85, 0.91 and 0.72 respectively on GPCR data. These results indicate that SMOTE has the highest AUC values. Furthermore, we found that the SMOTE technique is more capable of handling class imbalance problems on CPI prediction compared to the remaining three other techniques

    Drug-Target Interaction Networks Prediction Using Short-linear Motifs

    Get PDF
    Drug-target interaction (DTI) prediction is a fundamental step in drug discovery and genomic research and contributes to medical treatment. Various computational methods have been developed to find potential DTIs. Machine learning (ML) has been currently used for new DTIs identification from existing DTI networks. There are mainly two ML-based approaches for DTI network prediction: similarity-based methods and feature-based methods. In this thesis, we propose a feature-based approach, and firstly use short-linear motifs (SLiMs) as descriptors of protein. Additionally, chemical substructure fingerprints are used as features of drug. Moreover, another challenge in this field is the lack of negative data for the training set because most data which can be found in public databases is interaction samples. Many researchers regard unknown drug-target pairs as non-interaction, which is incorrect, and may cause serious consequences. To solve this problem, we introduce a strategy to select reliable negative samples according to the features of positive data. We use the same benchmark datasets as previous research in order to compare with them. After trying three classifiers k nearest neighbours (k-NN), Random Forest (RF) and Support Vector Machine (SVM), we find that the results of k-NN are satisfied but not as excellent as RF and SVM. Compared with existing approaches using the same datasets to solve the same problem, our method performs the best under most circumstance

    Drug Target Interaction Prediction Using Machine Learning Techniques – A Review

    Get PDF
    Drug discovery is a key process, given the rising and ubiquitous demand for medication to stay in good shape right through the course of one’s life. Drugs are small molecules that inhibit or activate the function of a protein, offering patients a host of therapeutic benefits. Drug design is the inventive process of finding new medication, based on targets or proteins. Identifying new drugs is a process that involves time and money. This is where computer-aided drug design helps cut time and costs. Drug design needs drug targets that are a protein and a drug compound, with which the interaction between a drug and a target is established. Interaction, in this context, refers to the process of discovering protein binding sites, which are protein pockets that bind with drugs. Pockets are regions on a protein macromolecule that bind to drug molecules. Researchers have been at work trying to determine new Drug Target Interactions (DTI) that predict whether or not a given drug molecule will bind to a target. Machine learning (ML) techniques help establish the interaction between drugs and their targets, using computer-aided drug design. This paper aims to explore ML techniques better for DTI prediction and boost future research. Qualitative and quantitative analyses of ML techniques show that several have been applied to predict DTIs, employing a range of classifiers. Though DTI prediction improves with negative drug target pairs (DTP), the lack of true negative DTPs has led to the use a particular dataset of drugs and targets. Using dynamic DTPs improves DTI prediction. Little attention has so far been paid to developing a new classifier for DTI classification, and there is, unquestionably, a need for better ones

    Reaching the End-Game for GWAS: Machine Learning Approaches for the Prioritization of Complex Disease Loci.

    Get PDF
    Genome-wide association studies (GWAS) have revealed thousands of genetic loci that underpin the complex biology of many human traits. However, the strength of GWAS - the ability to detect genetic association by linkage disequilibrium (LD) - is also its limitation. Whilst the ever-increasing study size and improved design have augmented the power of GWAS to detect effects, differentiation of causal variants or genes from other highly correlated genes associated by LD remains the real challenge. This has severely hindered the biological insights and clinical translation of GWAS findings. Although thousands of disease susceptibility loci have been reported, causal genes at these loci remain elusive. Machine learning (ML) techniques offer an opportunity to dissect the heterogeneity of variant and gene signals in the post-GWAS analysis phase. ML models for GWAS prioritization vary greatly in their complexity, ranging from relatively simple logistic regression approaches to more complex ensemble models such as random forests and gradient boosting, as well as deep learning models, i.e., neural networks. Paired with functional validation, these methods show important promise for clinical translation, providing a strong evidence-based approach to direct post-GWAS research. However, as ML approaches continue to evolve to meet the challenge of causal gene identification, a critical assessment of the underlying methodologies and their applicability to the GWAS prioritization problem is needed. This review investigates the landscape of ML applications in three parts: selected models, input features, and output model performance, with a focus on prioritizations of complex disease associated loci. Overall, we explore the contributions ML has made towards reaching the GWAS end-game with consequent wide-ranging translational impact

    Two-Stage Fine-Tuning: A Novel Strategy for Learning Class-Imbalanced Data

    Full text link
    Classification on long-tailed distributed data is a challenging problem, which suffers from serious class-imbalance and hence poor performance on tail classes with only a few samples. Owing to this paucity of samples, learning on the tail classes is especially challenging for the fine-tuning when transferring a pretrained model to a downstream task. In this work, we present a simple modification of standard fine-tuning to cope with these challenges. Specifically, we propose a two-stage fine-tuning: we first fine-tune the final layer of the pretrained model with class-balanced reweighting loss, and then we perform the standard fine-tuning. Our modification has several benefits: (1) it leverages pretrained representations by only fine-tuning a small portion of the model parameters while keeping the rest untouched; (2) it allows the model to learn an initial representation of the specific task; and importantly (3) it protects the learning of tail classes from being at a disadvantage during the model updating. We conduct extensive experiments on synthetic datasets of both two-class and multi-class tasks of text classification as well as a real-world application to ADME (i.e., absorption, distribution, metabolism, and excretion) semantic labeling. The experimental results show that the proposed two-stage fine-tuning outperforms both fine-tuning with conventional loss and fine-tuning with a reweighting loss on the above datasets.Comment: 20 pages, 6 figure

    Relation Prediction over Biomedical Knowledge Bases for Drug Repositioning

    Get PDF
    Identifying new potential treatment options for medical conditions that cause human disease burden is a central task of biomedical research. Since all candidate drugs cannot be tested with animal and clinical trials, in vitro approaches are first attempted to identify promising candidates. Likewise, identifying other essential relations (e.g., causation, prevention) between biomedical entities is also critical to understand biomedical processes. Hence, it is crucial to develop automated relation prediction systems that can yield plausible biomedical relations to expedite the discovery process. In this dissertation, we demonstrate three approaches to predict treatment relations between biomedical entities for the drug repositioning task using existing biomedical knowledge bases. Our approaches can be broadly labeled as link prediction or knowledge base completion in computer science literature. Specifically, first we investigate the predictive power of graph paths connecting entities in the publicly available biomedical knowledge base, SemMedDB (the entities and relations constitute a large knowledge graph as a whole). To that end, we build logistic regression models utilizing semantic graph pattern features extracted from the SemMedDB to predict treatment and causative relations in Unified Medical Language System (UMLS) Metathesaurus. Second, we study matrix and tensor factorization algorithms for predicting drug repositioning pairs in repoDB, a general purpose gold standard database of approved and failed drug–disease indications. The idea here is to predict repoDB pairs by approximating the given input matrix/tensor structure where the value of a cell represents the existence of a relation coming from SemMedDB and UMLS knowledge bases. The essential goal is to predict the test pairs that have a blank cell in the input matrix/tensor based on the shared biomedical context among existing non-blank cells. Our final approach involves graph convolutional neural networks where entities and relation types are embedded in a vector space involving neighborhood information. Basically, we minimize an objective function to guide our model to concept/relation embeddings such that distance scores for positive relation pairs are lower than those for the negative ones. Overall, our results demonstrate that recent link prediction methods applied to automatically curated, and hence imprecise, knowledge bases can nevertheless result in high accuracy drug candidate prediction with appropriate configuration of both the methods and datasets used

    Systems Analytics and Integration of Big Omics Data

    Get PDF
    A “genotype"" is essentially an organism's full hereditary information which is obtained from its parents. A ""phenotype"" is an organism's actual observed physical and behavioral properties. These may include traits such as morphology, size, height, eye color, metabolism, etc. One of the pressing challenges in computational and systems biology is genotype-to-phenotype prediction. This is challenging given the amount of data generated by modern Omics technologies. This “Big Data” is so large and complex that traditional data processing applications are not up to the task. Challenges arise in collection, analysis, mining, sharing, transfer, visualization, archiving, and integration of these data. In this Special Issue, there is a focus on the systems-level analysis of Omics data, recent developments in gene ontology annotation, and advances in biological pathways and network biology. The integration of Omics data with clinical and biomedical data using machine learning is explored. This Special Issue covers new methodologies in the context of gene–environment interactions, tissue-specific gene expression, and how external factors or host genetics impact the microbiome
    • …
    corecore