160,045 research outputs found

    Cell lineage tracing reveals the plasticity of the hemocyte lineages and of the hematopoietic compartments in Drosophila melanogaster

    Get PDF
    Much of our knowledge on hematopoiesis, hematopoietic compartments, hematopoietic cell lineages and immunity has been derived from studies on the vertebrate immune system. The sophisticated innate immunity of insects, the phylogenetic conservation and the power of Drosophila genetics allowed the investigation of immune cell (hemocyte) lineage relationships in Drosophila melanogaster. The development of the hemocyte lineages in Drosophila is a result of a precisely regulated succession of intracellular and intercellular events, though the nature and extent of these interactions are not known. We describe here a cell lineage tracing system set up to analyze the development of hemocyte lineages and functionally distinct hemocyte subsets. This system allowed us to distinguish two major embryonic hemocyte lineages, the crq and Dot lineages, in two, physically separated compartments, the embryonic macrophages and the embryonic lymph gland. We followed the fate and development of these lineages in the construction of the larval hematopoietic compartments and during the cell-mediated immune response, the encapsulation reaction. Our results revealed the considerable plasticity and concerted action of the hematopoietic compartments and the hemocyte lineages in the development of the innate immune system and in the course of the cell-mediated immune response in Drosophila

    p120 catenin is required for the stress response in Drosophila

    Get PDF
    p120ctn is a ubiquitously expressed core component of cadherin junctions and essential for vertebrate development. Surprisingly, Drosophila p120ctn (dp120ctn) is dispensable for adherens junctions and development, which has discouraged Drosophila researchers from further pursuing the biological role of dp120ctn. Here we demonstrate that dp120ctn loss results in increased heat shock sensitivity and reduced animal lifespan, which are completely rescued by ectopic expression of a dp120ctn-GFP transgene. Transcriptomic analysis revealed multiple relish/NF-κB target genes differentially expressed upon loss of dp120ctn. Importantly, this aberrant gene expression was rescued by overexpression of dp120ctn-GFP or heterozygosity for relish. Our results uncover a novel role for dp120ctn in the regulation of animal stress response and immune signalling. This may represent an ancient role of p120ctn and can influence further studies in Drosophila and mammals

    A comparative analysis of transcription factor expression during metazoan embryonic development

    Get PDF
    During embryonic development, a complex organism is formed from a single starting cell. These processes of growth and differentiation are driven by large transcriptional changes, which are following the expression and activity of transcription factors (TFs). This study sought to compare TF expression during embryonic development in a diverse group of metazoan animals: representatives of vertebrates (Danio rerio, Xenopus tropicalis), a chordate (Ciona intestinalis) and invertebrate phyla such as insects (Drosophila melanogaster, Anopheles gambiae) and nematodes (Caenorhabditis elegans) were sampled, The different species showed overall very similar TF expression patterns, with TF expression increasing during the initial stages of development. C2H2 zinc finger TFs were over-represented and Homeobox TFs were under-represented in the early stages in all species. We further clustered TFs for each species based on their quantitative temporal expression profiles. This showed very similar TF expression trends in development in vertebrate and insect species. However, analysis of the expression of orthologous pairs between more closely related species showed that expression of most individual TFs is not conserved, following the general model of duplication and diversification. The degree of similarity between TF expression between Xenopus tropicalis and Danio rerio followed the hourglass model, with the greatest similarity occuring during the early tailbud stage in Xenopus tropicalis and the late segmentation stage in Danio rerio. However, for Drosophila melanogaster and Anopheles gambiae there were two periods of high TF transcriptome similarity, one during the Arthropod phylotypic stage at 8-10 hours into Drosophila development and the other later at 16-18 hours into Drosophila development.Comment: ~10 pages, 50 references, 6+3 figures and 5 table

    A Hox gene mutation that triggers Nonsense-mediated RNA decay and affects alternative splicing during Drosophila development

    Get PDF
    Nonsense mutations are usually assumed to affect protein function by generating truncated protein products. Nonetheless, it is now clear that these mutations affect not just protein synthesis but also messenger RNA stability. The surveillance mechanism responsible for the detection and degradation of 'nonsense' RNA messages is termed nonsense-mediated RNA decay (NMD). Essential biochemical components of the NMD machinery have been defined in several species. Here we identify the Drosophila orthologue of one of these factors, Upf1, and document its expression during embryogenesis. To test whether NMD acts during Drosophila development, we make use of a mutation that introduces a stop codon into a variably spliced exon of the Hox gene Ultrabithorax (Ubx). Using real-time quantitative RT-PCR we demonstrate that Ubx transcripts containing the premature stop codon are expressed at lower levels than their wild type counterpart. Unexpectedly, we also find that the same mutation significantly increases the levels of a Ubx splicing isoform that lacks the exon containing the premature termination codon. These findings indicate that NMD is operational during Drosophila development and suggest that nonsense mutations may affect development by altering the spectrum of splicing products formed, as well as by reducing or eliminating protein synthesis

    Experimental Control and Characterization of Autophagy in Drosophila

    Get PDF
    Insects such as the fruit fly Drosophila melanogaster, which fundamentally reorganize their body plan during metamorphosis, make extensive use of autophagy for their normal development and physiology. In the fruit fly, the hepatic/adipose organ known as the fat body accumulates nutrient stores during the larval feeding stage. Upon entering metamorphosis, as well as in response to starvation, these nutrients are mobilized through a massive induction of autophagy, providing support to other tissues and organs during periods of nutrient deprivation. High levels of autophagy are also observed in larval tissues destined for elimination, such as the salivary glands and larval gut. Drosophila is emerging as an important system for studying the functions and regulation of autophagy in an in vivo setting. In this chapter we describe reagents and methods for monitoring autophagy in Drosophila, focusing on the larval fat body. We also describe methods for experimentally activating and inhibiting autophagy in this system and discuss the potential for genetic analysis in Drosophila to identify novel genes involved in autophagy

    Assaying locomotor activity to study circadian rhythms and sleep parameters in Drosophila.

    Get PDF
    Most life forms exhibit daily rhythms in cellular, physiological and behavioral phenomena that are driven by endogenous circadian (≡24 hr) pacemakers or clocks. Malfunctions in the human circadian system are associated with numerous diseases or disorders. Much progress towards our understanding of the mechanisms underlying circadian rhythms has emerged from genetic screens whereby an easily measured behavioral rhythm is used as a read-out of clock function. Studies using Drosophila have made seminal contributions to our understanding of the cellular and biochemical bases underlying circadian rhythms. The standard circadian behavioral read-out measured in Drosophila is locomotor activity. In general, the monitoring system involves specially designed devices that can measure the locomotor movement of Drosophila. These devices are housed in environmentally controlled incubators located in a darkroom and are based on using the interruption of a beam of infrared light to record the locomotor activity of individual flies contained inside small tubes. When measured over many days, Drosophila exhibit daily cycles of activity and inactivity, a behavioral rhythm that is governed by the animal's endogenous circadian system. The overall procedure has been simplified with the advent of commercially available locomotor activity monitoring devices and the development of software programs for data analysis. We use the system from Trikinetics Inc., which is the procedure described here and is currently the most popular system used worldwide. More recently, the same monitoring devices have been used to study sleep behavior in Drosophila. Because the daily wake-sleep cycles of many flies can be measured simultaneously and only 1 to 2 weeks worth of continuous locomotor activity data is usually sufficient, this system is ideal for large-scale screens to identify Drosophila manifesting altered circadian or sleep properties

    The Actin-binding Protein Moesin and Memory Formation in Drosophila : A thesis presented to Massey University in partial fulfillment of the requirements for the degree of Master of Science in Biochemistry

    Get PDF
    Moesin is a cytoskeletal adaptor protein that plays an important role in modification of the actin cytoskeleton and the formation of dendritic spines, which may be crucial to long-term potentiation. Moesin has also been found to be overexpressed in brains affected by Alzheimer’s disease. Despite being identified as a potential memory gene and linked to several neurological diseases, its role in memory has not been evaluated. The role of Moesin in the Drosophila melanogaster brain was investigated by characterizing the impact of modulating Moesin expression on several aspects of development and behavior. Moesin is involved in both brain and eye development. Knockdown and overexpression of Moesin led to defects in the development of the mushroom body, a brain structure critical for memory formation and recall. Further, knockdown of Moesin throughout development resulted in a significant deficit in long-term memory. Additionally, knockdown of Moesin restricted to adulthood also resulted in a significant deficit in long-term memory, which suggests that Moesin also has a non-developmental role in memory. Further, this requirement for Moesin in long-term memory was traced to the alpha/beta and gamma neurons of the mushroom body. Through the use of a phosphomimetic Moesin mutant that mimics the phosphorylated, activated form of Moesin, the regulation of Moesin in the Drosophila brain was analyzed. Expression of this mutant in neurons disrupted photoreceptor development in the Drosophila eye and a novel sensorimotor phenotype attributed to its expression in the brain was identified resulting in a defect in stereotypical climbing behavior. These results suggest a critical role for Moesin in general neurological functioning and the molecular pathways involved in its activation require further investigation

    Drosophila as a model system to study nonautonomous mechanisms affecting tumour growth and cell death

    Get PDF
    The study of cancer has represented a central focus in medical research for over a century. The great complexity and constant evolution of the pathology require the use of multiple research model systems and interdisciplinary approaches. This is necessary in order to achieve a comprehensive understanding into the mechanisms driving disease initiation and progression, to aid the development of appropriate therapies. In recent decades, the fruit fly Drosophila melanogaster and its associated powerful genetic tools have become a very attractive model system to study tumour-intrinsic and non-tumour-derived processes that mediate tumour development in vivo. In this review, we will summarize recent work on Drosophila as a model system to study cancer biology. We will focus on the interactions between tumours and their microenvironment, including extrinsic mechanisms affecting tumour growth and how tumours impact systemic host physiology

    Monoclonal Antibodies against the Drosophila Nervous System

    Get PDF
    A panel of 148 monoclonal antibodies directed against Drosophila neural antigens has been prepared by using mice immunized with homogenates of Drosophila tissue. Antibodies were screened immunohistochemically on cryostat sections of fly heads. A large diversity of staining patterns was observed. Some antigens were broadly distributed among tissues; others were highly specific to nerve fibers, neuropil, muscle, the tracheal system, cell nuclei, photoreceptors, or other structures. The antigens for many of the antibodies have been identified on immunoblots. Monoclonal antibodies that identify specific molecules within the nervous system should prove useful in the study of the molecular genetics of neural development
    corecore