199 research outputs found

    Dronevision: An Experimental 3D Testbed for Flying Light Specks

    Full text link
    Today's robotic laboratories for drones are housed in a large room. At times, they are the size of a warehouse. These spaces are typically equipped with permanent devices to localize the drones, e.g., Vicon Infrared cameras. Significant time is invested to fine-tune the localization apparatus to compute and control the position of the drones. One may use these laboratories to develop a 3D multimedia system with miniature sized drones configured with light sources. As an alternative, this brave new idea paper envisions shrinking these room-sized laboratories to the size of a cube or cuboid that sits on a desk and costs less than 10K dollars. The resulting Dronevision (DV) will be the size of a 1990s Television. In addition to light sources, its Flying Light Specks (FLSs) will be network-enabled drones with storage and processing capability to implement decentralized algorithms. The DV will include a localization technique to expedite development of 3D displays. It will act as a haptic interface for a user to interact with and manipulate the 3D virtual illuminations. It will empower an experimenter to design, implement, test, debug, and maintain software and hardware that realize novel algorithms in the comfort of their office without having to reserve a laboratory. In addition to enhancing productivity, it will improve safety of the experimenter by minimizing the likelihood of accidents. This paper introduces the concept of a DV, the research agenda one may pursue using this device, and our plans to realize one

    DandelionTouch: High Fidelity Haptic Rendering of Soft Objects in VR by a Swarm of Drones

    Full text link
    To achieve high fidelity haptic rendering of soft objects in a high mobility virtual environment, we propose a novel haptic display DandelionTouch. The tactile actuators are delivered to the fingertips of the user by a swarm of drones. Users of DandelionTouch are capable of experiencing tactile feedback in a large space that is not limited by the device's working area. Importantly, they will not experience muscle fatigue during long interactions with virtual objects. Hand tracking and swarm control algorithm allow guiding the swarm with hand motions and avoid collisions inside the formation. Several topologies of the impedance connection between swarm units were investigated in this research. The experiment, in which drones performed a point following task on a square trajectory in real-time, revealed that drones connected in a Star topology performed the trajectory with low mean positional error (RMSE decreased by 20.6% in comparison with other impedance topologies and by 40.9% in comparison with potential field-based swarm control). The achieved velocities of the drones in all formations with impedance behavior were 28% higher than for the swarm controlled with the potential field algorithm. Additionally, the perception of several vibrotactile patterns was evaluated in a user study with 7 participants. The study has shown that the proposed combination of temporal delay and frequency modulation allows users to successfully recognize the surface property and motion direction in VR simultaneously (mean recognition rate of 70%, maximum of 93%). DandelionTouch suggests a new type of haptic feedback in VR systems where no hand-held or wearable interface is required.Comment: Accepted to the 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Copyright 20XX IEEE. Personal use of this material is permitte

    Corseto: A Kinesthetic Garment for Designing, Composing for, and Experiencing an Intersubjective Haptic Voice

    Get PDF
    We present a novel intercorporeal experience - an intersubjective haptic voice. Through an autobiographical design inquiry, based on singing techniques from the classical opera tradition, we created Corsetto, a kinesthetic garment for transferring somatic reminiscents of vocal experience from an expert singer to a listener. We then composed haptic gestures enacted in the Corsetto, emulating upper-body movements of the live singer performing a piece by Morton Feldman named Three Voices. The gestures in the Corsetto added a haptics-based \u27fourth voice\u27 to the immersive opera performance. Finally, we invited audiences who were asked to wear Corsetto during live performances. Afterwards they engaged in micro-phenomenological interviews. The analysis revealed how the Corsetto managed to bridge inner and outer bodily sensations, creating a feeling of a shared intercorporeal experience, dissolving boundaries between listener, singer and performance. We propose that \u27intersubjective haptics\u27 can be a generative medium not only for singing performances, but other possible intersubjective experiences

    CoVR: A Large-Scale Force-Feedback Robotic Interface for Non-Deterministic Scenarios in VR

    Full text link
    We present CoVR, a novel robotic interface providing strong kinesthetic feedback (100 N) in a room-scale VR arena. It consists of a physical column mounted on a 2D Cartesian ceiling robot (XY displacements) with the capacity of (1) resisting to body-scaled users' actions such as pushing or leaning; (2) acting on the users by pulling or transporting them as well as (3) carrying multiple potentially heavy objects (up to 80kg) that users can freely manipulate or make interact with each other. We describe its implementation and define a trajectory generation algorithm based on a novel user intention model to support non-deterministic scenarios, where the users are free to interact with any virtual object of interest with no regards to the scenarios' progress. A technical evaluation and a user study demonstrate the feasibility and usability of CoVR, as well as the relevance of whole-body interactions involving strong forces, such as being pulled through or transported.Comment: 10 pages (without references), 14 pages tota

    Advancing proxy-based haptic feedback in virtual reality

    Get PDF
    This thesis advances haptic feedback for Virtual Reality (VR). Our work is guided by Sutherland's 1965 vision of the ultimate display, which calls for VR systems to control the existence of matter. To push towards this vision, we build upon proxy-based haptic feedback, a technique characterized by the use of passive tangible props. The goal of this thesis is to tackle the central drawback of this approach, namely, its inflexibility, which yet hinders it to fulfill the vision of the ultimate display. Guided by four research questions, we first showcase the applicability of proxy-based VR haptics by employing the technique for data exploration. We then extend the VR system's control over users' haptic impressions in three steps. First, we contribute the class of Dynamic Passive Haptic Feedback (DPHF) alongside two novel concepts for conveying kinesthetic properties, like virtual weight and shape, through weight-shifting and drag-changing proxies. Conceptually orthogonal to this, we study how visual-haptic illusions can be leveraged to unnoticeably redirect the user's hand when reaching towards props. Here, we contribute a novel perception-inspired algorithm for Body Warping-based Hand Redirection (HR), an open-source framework for HR, and psychophysical insights. The thesis concludes by proving that the combination of DPHF and HR can outperform the individual techniques in terms of the achievable flexibility of the proxy-based haptic feedback.Diese Arbeit widmet sich haptischem Feedback für Virtual Reality (VR) und ist inspiriert von Sutherlands Vision des ultimativen Displays, welche VR-Systemen die Fähigkeit zuschreibt, Materie kontrollieren zu können. Um dieser Vision näher zu kommen, baut die Arbeit auf dem Konzept proxy-basierter Haptik auf, bei der haptische Eindrücke durch anfassbare Requisiten vermittelt werden. Ziel ist es, diesem Ansatz die für die Realisierung eines ultimativen Displays nötige Flexibilität zu verleihen. Dazu bearbeiten wir vier Forschungsfragen und zeigen zunächst die Anwendbarkeit proxy-basierter Haptik durch den Einsatz der Technik zur Datenexploration. Anschließend untersuchen wir in drei Schritten, wie VR-Systeme mehr Kontrolle über haptische Eindrücke von Nutzern erhalten können. Hierzu stellen wir Dynamic Passive Haptic Feedback (DPHF) vor, sowie zwei Verfahren, die kinästhetische Eindrücke wie virtuelles Gewicht und Form durch Gewichtsverlagerung und Veränderung des Luftwiderstandes von Requisiten vermitteln. Zusätzlich untersuchen wir, wie visuell-haptische Illusionen die Hand des Nutzers beim Greifen nach Requisiten unbemerkt umlenken können. Dabei stellen wir einen neuen Algorithmus zur Body Warping-based Hand Redirection (HR), ein Open-Source-Framework, sowie psychophysische Erkenntnisse vor. Abschließend zeigen wir, dass die Kombination von DPHF und HR proxy-basierte Haptik noch flexibler machen kann, als es die einzelnen Techniken alleine können

    Enhancing interaction in mixed reality

    Get PDF
    With continuous technological innovation, we observe mixed reality emerging from research labs into the mainstream. The arrival of capable mixed reality devices transforms how we are entertained, consume information, and interact with computing systems, with the most recent being able to present synthesized stimuli to any of the human senses and substantially blur the boundaries between the real and virtual worlds. In order to build expressive and practical mixed reality experiences, designers, developers, and stakeholders need to understand and meet its upcoming challenges. This research contributes a novel taxonomy for categorizing mixed reality experiences and guidelines for designing mixed reality experiences. We present the results of seven studies examining the challenges and opportunities of mixed reality experiences, the impact of modalities and interaction techniques on the user experience, and how to enhance the experiences. We begin with a study determining user attitudes towards mixed reality in domestic and educational environments, followed by six research probes that each investigate an aspect of reality or virtuality. In the first, a levitating steerable projector enables us to investigate how the real world can be enhanced without instrumenting the user. We show that the presentation of in-situ instructions for navigational tasks leads to a significantly higher ability to observe and recall real-world landmarks. With the second probe, we enhance the perception of reality by superimposing information usually not visible to the human eye. In amplifying the human vision, we enable users to perceive thermal radiation visually. Further, we examine the effect of substituting physical components with non-functional tangible proxies or entirely virtual representations. With the third research probe, we explore how to enhance virtuality to enable a user to input text on a physical keyboard while being immersed in the virtual world. Our prototype tracked the user’s hands and keyboard to enable generic text input. Our analysis of text entry performance showed the importance and effect of different hand representations. We then investigate how to touch virtuality by simulating generic haptic feedback for virtual reality and show how tactile feedback through quadcopters can significantly increase the sense of presence. Our final research probe investigates the usability and input space of smartphones within mixed reality environments, pairing the user’s smartphone as an input device with a secondary physical screen. Based on our learnings from these individual research probes, we developed a novel taxonomy for categorizing mixed reality experiences and guidelines for designing mixed reality experiences. The taxonomy is based on the human sensory system and human capabilities of articulation. We showcased its versatility and set our research probes into perspective by organizing them inside the taxonomic space. The design guidelines are divided into user-centered and technology-centered. It is our hope that these will contribute to the bright future of mixed reality systems while emphasizing the new underlining interaction paradigm.Mixed Reality (vermischte Realitäten) gehen aufgrund kontinuierlicher technologischer Innovationen langsam von der reinen Forschung in den Massenmarkt über. Mit der Einführung von leistungsfähigen Mixed-Reality-Geräten verändert sich die Art und Weise, wie wir Unterhaltungsmedien und Informationen konsumieren und wie wir mit Computersystemen interagieren. Verschiedene existierende Geräte sind in der Lage, jeden der menschlichen Sinne mit synthetischen Reizen zu stimulieren. Hierdurch verschwimmt zunehmend die Grenze zwischen der realen und der virtuellen Welt. Um eindrucksstarke und praktische Mixed-Reality-Erfahrungen zu kreieren, müssen Designer und Entwicklerinnen die künftigen Herausforderungen und neuen Möglichkeiten verstehen. In dieser Dissertation präsentieren wir eine neue Taxonomie zur Kategorisierung von Mixed-Reality-Erfahrungen sowie Richtlinien für die Gestaltung von solchen. Wir stellen die Ergebnisse von sieben Studien vor, in denen die Herausforderungen und Chancen von Mixed-Reality-Erfahrungen, die Auswirkungen von Modalitäten und Interaktionstechniken auf die Benutzererfahrung und die Möglichkeiten zur Verbesserung dieser Erfahrungen untersucht werden. Wir beginnen mit einer Studie, in der die Haltung der nutzenden Person gegenüber Mixed Reality in häuslichen und Bildungsumgebungen analysiert wird. In sechs weiteren Fallstudien wird jeweils ein Aspekt der Realität oder Virtualität untersucht. In der ersten Fallstudie wird mithilfe eines schwebenden und steuerbaren Projektors untersucht, wie die Wahrnehmung der realen Welt erweitert werden kann, ohne dabei die Person mit Technologie auszustatten. Wir zeigen, dass die Darstellung von in-situ-Anweisungen für Navigationsaufgaben zu einer deutlich höheren Fähigkeit führt, Sehenswürdigkeiten der realen Welt zu beobachten und wiederzufinden. In der zweiten Fallstudie erweitern wir die Wahrnehmung der Realität durch Überlagerung von Echtzeitinformationen, die für das menschliche Auge normalerweise unsichtbar sind. Durch die Erweiterung des menschlichen Sehvermögens ermöglichen wir den Anwender:innen, Wärmestrahlung visuell wahrzunehmen. Darüber hinaus untersuchen wir, wie sich das Ersetzen von physischen Komponenten durch nicht funktionale, aber greifbare Replikate oder durch die vollständig virtuelle Darstellung auswirkt. In der dritten Fallstudie untersuchen wir, wie virtuelle Realitäten verbessert werden können, damit eine Person, die in der virtuellen Welt verweilt, Text auf einer physischen Tastatur eingeben kann. Unser Versuchsdemonstrator detektiert die Hände und die Tastatur, zeigt diese in der vermischen Realität an und ermöglicht somit die verbesserte Texteingaben. Unsere Analyse der Texteingabequalität zeigte die Wichtigkeit und Wirkung verschiedener Handdarstellungen. Anschließend untersuchen wir, wie man Virtualität berühren kann, indem wir generisches haptisches Feedback für virtuelle Realitäten simulieren. Wir zeigen, wie Quadrokopter taktiles Feedback ermöglichen und dadurch das Präsenzgefühl deutlich steigern können. Unsere letzte Fallstudie untersucht die Benutzerfreundlichkeit und den Eingaberaum von Smartphones in Mixed-Reality-Umgebungen. Hierbei wird das Smartphone der Person als Eingabegerät mit einem sekundären physischen Bildschirm verbunden, um die Ein- und Ausgabemodalitäten zu erweitern. Basierend auf unseren Erkenntnissen aus den einzelnen Fallstudien haben wir eine neuartige Taxonomie zur Kategorisierung von Mixed-Reality-Erfahrungen sowie Richtlinien für die Gestaltung von solchen entwickelt. Die Taxonomie basiert auf dem menschlichen Sinnessystem und den Artikulationsfähigkeiten. Wir stellen die vielseitige Verwendbarkeit vor und setzen unsere Fallstudien in Kontext, indem wir sie innerhalb des taxonomischen Raums einordnen. Die Gestaltungsrichtlinien sind in nutzerzentrierte und technologiezentrierte Richtlinien unterteilt. Es ist unsere Anliegen, dass diese Gestaltungsrichtlinien zu einer erfolgreichen Zukunft von Mixed-Reality-Systemen beitragen und gleichzeitig die neuen Interaktionsparadigmen hervorheben

    ElectroCutscenes: Realistic Haptic Feedback in Cutscenes of Virtual Reality Games Using Electric Muscle Stimulation

    Get PDF
    Cutscenes in Virtual Reality (VR) games enhance story telling by delivering output in the form of visual, auditory, or haptic feedback (e.g., using vibrating handheld controllers). Since they lack interaction in the form of user input, cutscenes would significantly benefit from improved feedback. We introduce the concept and implementation of ElectroCutscenes, a concept in which Electric Muscle Stimulation (EMS) is leveraged to elicit physical user movements to correspond to those of personal avatars in cutscenes of VR games while the user stays passive. Through a user study (N=22) in which users passively received kinesthetic feedback resulting in involuntarily movements, we show that ElectroCutscenes significantly increases perceived presence and realism compared to controller-based vibrotactile and no haptic feedback. Furthermore, we found preliminary evidence that combining visual and EMS feedback can evoke movements that are not actuated by either of them alone. We discuss how to enhance realism and presence of cutscenes in VR games even when EMS can partially rather than completely actuate the desired body movements

    인간 기계 상호작용을 위한 강건하고 정확한 손동작 추적 기술 연구

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 기계항공공학부, 2021.8. 이동준.Hand-based interface is promising for realizing intuitive, natural and accurate human machine interaction (HMI), as the human hand is main source of dexterity in our daily activities. For this, the thesis begins with the human perception study on the detection threshold of visuo-proprioceptive conflict (i.e., allowable tracking error) with or without cutantoues haptic feedback, and suggests tracking error specification for realistic and fluidic hand-based HMI. The thesis then proceeds to propose a novel wearable hand tracking module, which, to be compatible with the cutaneous haptic devices spewing magnetic noise, opportunistically employ heterogeneous sensors (IMU/compass module and soft sensor) reflecting the anatomical properties of human hand, which is suitable for specific application (i.e., finger-based interaction with finger-tip haptic devices). This hand tracking module however loses its tracking when interacting with, or being nearby, electrical machines or ferromagnetic materials. For this, the thesis presents its main contribution, a novel visual-inertial skeleton tracking (VIST) framework, that can provide accurate and robust hand (and finger) motion tracking even for many challenging real-world scenarios and environments, for which the state-of-the-art technologies are known to fail due to their respective fundamental limitations (e.g., severe occlusions for tracking purely with vision sensors; electromagnetic interference for tracking purely with IMUs (inertial measurement units) and compasses; and mechanical contacts for tracking purely with soft sensors). The proposed VIST framework comprises a sensor glove with multiple IMUs and passive visual markers as well as a head-mounted stereo camera; and a tightly-coupled filtering-based visual-inertial fusion algorithm to estimate the hand/finger motion and auto-calibrate hand/glove-related kinematic parameters simultaneously while taking into account the hand anatomical constraints. The VIST framework exhibits good tracking accuracy and robustness, affordable material cost, light hardware and software weights, and ruggedness/durability even to permit washing. Quantitative and qualitative experiments are also performed to validate the advantages and properties of our VIST framework, thereby, clearly demonstrating its potential for real-world applications.손 동작을 기반으로 한 인터페이스는 인간-기계 상호작용 분야에서 직관성, 몰입감, 정교함을 제공해줄 수 있어 많은 주목을 받고 있고, 이를 위해 가장 필수적인 기술 중 하나가 손 동작의 강건하고 정확한 추적 기술 이다. 이를 위해 본 학위논문에서는 먼저 사람 인지의 관점에서 손 동작 추적 오차의 인지 범위를 규명한다. 이 오차 인지 범위는 새로운 손 동작 추적 기술 개발 시 중요한 설계 기준이 될 수 있어 이를 피험자 실험을 통해 정량적으로 밝히고, 특히 손끝 촉각 장비가 있을때 이 인지 범위의 변화도 밝힌다. 이를 토대로, 촉각 피드백을 주는 것이 다양한 인간-기계 상호작용 분야에서 널리 연구되어 왔으므로, 먼저 손끝 촉각 장비와 함께 사용할 수 있는 손 동작 추적 모듈을 개발한다. 이 손끝 촉각 장비는 자기장 외란을 일으켜 착용형 기술에서 흔히 사용되는 지자기 센서를 교란하는데, 이를 적절한 사람 손의 해부학적 특성과 관성 센서/지자기 센서/소프트 센서의 적절한 활용을 통해 해결한다. 이를 확장하여 본 논문에서는, 촉각 장비 착용 시 뿐 아니라 모든 장비 착용 / 환경 / 물체와의 상호작용 시에도 사용 가능한 새로운 손 동작 추적 기술을 제안한다. 기존의 손 동작 추적 기술들은 가림 현상 (영상 기반 기술), 지자기 외란 (관성/지자기 센서 기반 기술), 물체와의 접촉 (소프트 센서 기반 기술) 등으로 인해 제한된 환경에서 밖에 사용하지 못한다. 이를 위해 많은 문제를 일으키는 지자기 센서 없이 상보적인 특성을 지니는 관성 센서와 영상 센서를 융합하고, 이때 작은 공간에 다 자유도의 움직임을 갖는 손 동작을 추적하기 위해 다수의 구분되지 않는 마커들을 사용한다. 이 마커의 구분 과정 (correspondence search)를 위해 기존의 약결합 (loosely-coupled) 기반이 아닌 강결합 (tightly-coupled 기반 센서 융합 기술을 제안하고, 이를 통해 지자기 센서 없이 정확한 손 동작이 가능할 뿐 아니라 착용형 센서들의 정확성/편의성에 문제를 일으키던 센서 부착 오차 / 사용자의 손 모양 등을 자동으로 정확히 보정한다. 이 제안된 영상-관성 센서 융합 기술 (Visual-Inertial Skeleton Tracking (VIST)) 의 뛰어난 성능과 강건성이 다양한 정량/정성 실험을 통해 검증되었고, 이는 VIST의 다양한 일상환경에서 기존 시스템이 구현하지 못하던 손 동작 추적을 가능케 함으로써, 많은 인간-기계 상호작용 분야에서의 가능성을 보여준다.1 Introduction 1 1.1. Motivation 1 1.2. Related Work 5 1.3. Contribution 12 2 Detection Threshold of Hand Tracking Error 16 2.1. Motivation 16 2.2. Experimental Environment 20 2.2.1. Hardware Setup 21 2.2.2. Virtual Environment Rendering 23 2.2.3. HMD Calibration 23 2.3. Identifying the Detection Threshold of Tracking Error 26 2.3.1. Experimental Setup 27 2.3.2. Procedure 27 2.3.3. Experimental Result 31 2.4. Enlarging the Detection Threshold of Tracking Error by Haptic Feedback 31 2.4.1. Experimental Setup 31 2.4.2. Procedure 32 2.4.3. Experimental Result 34 2.5. Discussion 34 3 Wearable Finger Tracking Module for Haptic Interaction 38 3.1. Motivation 38 3.2. Development of Finger Tracking Module 42 3.2.1. Hardware Setup 42 3.2.2. Tracking algorithm 45 3.2.3. Calibration method 48 3.3. Evaluation for VR Haptic Interaction Task 50 3.3.1. Quantitative evaluation of FTM 50 3.3.2. Implementation of Wearable Cutaneous Haptic Interface 51 3.3.3. Usability evaluation for VR peg-in-hole task 53 3.4. Discussion 57 4 Visual-Inertial Skeleton Tracking for Human Hand 59 4.1. Motivation 59 4.2. Hardware Setup and Hand Models 62 4.2.1. Human Hand Model 62 4.2.2. Wearable Sensor Glove 62 4.2.3. Stereo Camera 66 4.3. Visual Information Extraction 66 4.3.1. Marker Detection in Raw Images 68 4.3.2. Cost Function for Point Matching 68 4.3.3. Left-Right Stereo Matching 69 4.4. IMU-Aided Correspondence Search 72 4.5. Filtering-based Visual-Inertial Sensor Fusion 76 4.5.1. EKF States for Hand Tracking and Auto-Calibration 78 4.5.2. Prediction with IMU Information 79 4.5.3. Correction with Visual Information 82 4.5.4. Correction with Anatomical Constraints 84 4.6. Quantitative Evaluation for Free Hand Motion 87 4.6.1. Experimental Setup 87 4.6.2. Procedure 88 4.6.3. Experimental Result 90 4.7. Quantitative and Comparative Evaluation for Challenging Hand Motion 95 4.7.1. Experimental Setup 95 4.7.2. Procedure 96 4.7.3. Experimental Result 98 4.7.4. Performance Comparison with Existing Methods for Challenging Hand Motion 101 4.8. Qualitative Evaluation for Real-World Scenarios 105 4.8.1. Visually Complex Background 105 4.8.2. Object Interaction 106 4.8.3. Wearing Fingertip Cutaneous Haptic Devices 109 4.8.4. Outdoor Environment 111 4.9. Discussion 112 5 Conclusion 116 References 124 Abstract (in Korean) 139 Acknowledgment 141박

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems
    corecore