9,351 research outputs found

    A Decision Support System for Economic Viability and Environmental Impact Assessment of Vertical Farms

    Get PDF
    Vertical farming (VF) is the practice of growing crops or animals using the vertical dimension via multi-tier racks or vertically inclined surfaces. In this thesis, I focus on the emerging industry of plant-specific VF. Vertical plant farming (VPF) is a promising and relatively novel practice that can be conducted in buildings with environmental control and artificial lighting. However, the nascent sector has experienced challenges in economic viability, standardisation, and environmental sustainability. Practitioners and academics call for a comprehensive financial analysis of VPF, but efforts are stifled by a lack of valid and available data. A review of economic estimation and horticultural software identifies a need for a decision support system (DSS) that facilitates risk-empowered business planning for vertical farmers. This thesis proposes an open-source DSS framework to evaluate business sustainability through financial risk and environmental impact assessments. Data from the literature, alongside lessons learned from industry practitioners, would be centralised in the proposed DSS using imprecise data techniques. These techniques have been applied in engineering but are seldom used in financial forecasting. This could benefit complex sectors which only have scarce data to predict business viability. To begin the execution of the DSS framework, VPF practitioners were interviewed using a mixed-methods approach. Learnings from over 19 shuttered and operational VPF projects provide insights into the barriers inhibiting scalability and identifying risks to form a risk taxonomy. Labour was the most commonly reported top challenge. Therefore, research was conducted to explore lean principles to improve productivity. A probabilistic model representing a spectrum of variables and their associated uncertainty was built according to the DSS framework to evaluate the financial risk for VF projects. This enabled flexible computation without precise production or financial data to improve economic estimation accuracy. The model assessed two VPF cases (one in the UK and another in Japan), demonstrating the first risk and uncertainty quantification of VPF business models in the literature. The results highlighted measures to improve economic viability and the viability of the UK and Japan case. The environmental impact assessment model was developed, allowing VPF operators to evaluate their carbon footprint compared to traditional agriculture using life-cycle assessment. I explore strategies for net-zero carbon production through sensitivity analysis. Renewable energies, especially solar, geothermal, and tidal power, show promise for reducing the carbon emissions of indoor VPF. Results show that renewably-powered VPF can reduce carbon emissions compared to field-based agriculture when considering the land-use change. The drivers for DSS adoption have been researched, showing a pathway of compliance and design thinking to overcome the ‘problem of implementation’ and enable commercialisation. Further work is suggested to standardise VF equipment, collect benchmarking data, and characterise risks. This work will reduce risk and uncertainty and accelerate the sector’s emergence

    Design and development of a traction motor emulator using a three-phase bidirectional buck-boost AC-DC converter

    Get PDF
    An industrial drive testing, with a ???real-machine??? can pave way, for some serious issues to test-bench, motor, and the operator. A slight disturbance in control logic amid testing, can damage the physical machine or drive. Such dangerous testing conditions can be avoided by supplanting real motor with a power electronic converter based ???Motor Emulator??? (ME) test-bench system. The conventional ME comprises of two-stage three-phase AC-DC-AC conversion with first-stage AC-DC as emulator and second-stage DC-AC as regenerating unit. This two-stage power conversion, require independent control algorithm, burdening control complexity as well as the number of power electronic switches are quite significant. Therefore, to economize and downsize conventional multistage ME system, this research work experimentally validates a common-DC-bus-configured ME system with only the AC-DC regenerative emulator stage. A bidirectional three-phase AC-DC converter is proposed as the regenerative emulator converter in a common-DC-Bus-configured ME system. The Proposed converter???s operating principle along with mathematical design and control strategy are also presented. To validate the operation of the proposed converter as a common DC-bus-configured emulator, two permanent magnet synchronous motors (PMSM) of 7.5 kW and 2.0 kW are emulated and their simulation and experimental results are presented here. The proposed bi-directional converter inspired from classical buck-boost operation, requires just ten unidirectional IGBT switches preventing any circulating current in the system. The proposed converter also eliminates the regenerative converter stage in classical ME system. Also, the proposed common-DC-bus-configured ME system requires a single stage control unlike independent control in existing ME system. The proposed converter provides four-quadrant operation and emulation of motor under study. The dynamic model of PMSM motor is simulated on the MATLAB simulation platform and the Simulation results are compared with experimental results. From the simulation and experimental results, it is concluded that, with the presented control scheme, the proposed ME converter can be made to draw the same current as a real machine would have drawn, had it been driven by the same DUT. Since, the output current of proposed converter is fed back to DC bus, the input power source requirement is reduced, making the overall ME system more energy efficient

    Predictive Maintenance of Critical Equipment for Floating Liquefied Natural Gas Liquefaction Process

    Get PDF
    Predictive Maintenance of Critical Equipment for Liquefied Natural Gas Liquefaction Process Meeting global energy demand is a massive challenge, especially with the quest of more affinity towards sustainable and cleaner energy. Natural gas is viewed as a bridge fuel to a renewable energy. LNG as a processed form of natural gas is the fastest growing and cleanest form of fossil fuel. Recently, the unprecedented increased in LNG demand, pushes its exploration and processing into offshore as Floating LNG (FLNG). The offshore topsides gas processes and liquefaction has been identified as one of the great challenges of FLNG. Maintaining topside liquefaction process asset such as gas turbine is critical to profitability and reliability, availability of the process facilities. With the setbacks of widely used reactive and preventive time-based maintenances approaches, to meet the optimal reliability and availability requirements of oil and gas operators, this thesis presents a framework driven by AI-based learning approaches for predictive maintenance. The framework is aimed at leveraging the value of condition-based maintenance to minimises the failures and downtimes of critical FLNG equipment (Aeroderivative gas turbine). In this study, gas turbine thermodynamics were introduced, as well as some factors affecting gas turbine modelling. Some important considerations whilst modelling gas turbine system such as modelling objectives, modelling methods, as well as approaches in modelling gas turbines were investigated. These give basis and mathematical background to develop a gas turbine simulated model. The behaviour of simple cycle HDGT was simulated using thermodynamic laws and operational data based on Rowen model. Simulink model is created using experimental data based on Rowen’s model, which is aimed at exploring transient behaviour of an industrial gas turbine. The results show the capability of Simulink model in capture nonlinear dynamics of the gas turbine system, although constraint to be applied for further condition monitoring studies, due to lack of some suitable relevant correlated features required by the model. AI-based models were found to perform well in predicting gas turbines failures. These capabilities were investigated by this thesis and validated using an experimental data obtained from gas turbine engine facility. The dynamic behaviours gas turbines changes when exposed to different varieties of fuel. A diagnostics-based AI models were developed to diagnose different gas turbine engine’s failures associated with exposure to various types of fuels. The capabilities of Principal Component Analysis (PCA) technique have been harnessed to reduce the dimensionality of the dataset and extract good features for the diagnostics model development. Signal processing-based (time-domain, frequency domain, time-frequency domain) techniques have also been used as feature extraction tools, and significantly added more correlations to the dataset and influences the prediction results obtained. Signal processing played a vital role in extracting good features for the diagnostic models when compared PCA. The overall results obtained from both PCA, and signal processing-based models demonstrated the capabilities of neural network-based models in predicting gas turbine’s failures. Further, deep learning-based LSTM model have been developed, which extract features from the time series dataset directly, and hence does not require any feature extraction tool. The LSTM model achieved the highest performance and prediction accuracy, compared to both PCA-based and signal processing-based the models. In summary, it is concluded from this thesis that despite some challenges related to gas turbines Simulink Model for not being integrated fully for gas turbine condition monitoring studies, yet data-driven models have proven strong potentials and excellent performances on gas turbine’s CBM diagnostics. The models developed in this thesis can be used for design and manufacturing purposes on gas turbines applied to FLNG, especially on condition monitoring and fault detection of gas turbines. The result obtained would provide valuable understanding and helpful guidance for researchers and practitioners to implement robust predictive maintenance models that will enhance the reliability and availability of FLNG critical equipment.Petroleum Technology Development Funds (PTDF) Nigeri

    A suite of quantum algorithms for the shortestvector problem

    Get PDF
    Crytography has come to be an essential part of the cybersecurity infrastructure that provides a safe environment for communications in an increasingly connected world. The advent of quantum computing poses a threat to the foundations of the current widely-used cryptographic model, due to the breaking of most of the cryptographic algorithms used to provide confidentiality, authenticity, and more. Consequently a new set of cryptographic protocols have been designed to be secure against quantum computers, and are collectively known as post-quantum cryptography (PQC). A forerunner among PQC is lattice-based cryptography, whose security relies upon the hardness of a number of closely related mathematical problems, one of which is known as the shortest vector problem (SVP). In this thesis I describe a suite of quantum algorithms that utilize the energy minimization principle to attack the shortest vector problem. The algorithms outlined span the gate-model and continuous time quantum computing, and explore methods of parameter optimization via variational methods, which are thought to be effective on near-term quantum computers. The performance of the algorithms are analyzed numerically, analytically, and on quantum hardware where possible. I explain how the results obtained in the pursuit of solving SVP apply more broadly to quantum algorithms seeking to solve general real-world problems; minimize the effect of noise on imperfect hardware; and improve efficiency of parameter optimization.Open Acces

    Addressing infrastructure challenges posed by the Harwich Formation through understanding its geological origins

    Get PDF
    Variable deposits known to make up the sequence of the Harwich Formation in London have been the subject of ongoing uncertainty within the engineering industry. Current stratigraphical subdivisions do not account for the systematic recognition of individual members in unexposed ground where recovered material is usually disturbed - fines are flushed out during the drilling process and loose materials are often lost or mixed with the surrounding layers. Most engineering problems associated with the Harwich Formation deposits are down to their unconsolidated nature and irregular cementation within layers. The consequent engineering hazards are commonly reflected in high permeability, raised groundwater pressures, ground settlements - when found near the surface and poor stability - when exposed during excavations or tunnelling operations. This frequently leads to sudden design changes or requires contingency measures during construction. All of these can result in damaged equipment, slow progress, and unforeseen costs. This research proposes a facies-based approach where the lithological facies assigned were identified based on reinterpretation of available borehole data from various ground investigations in London, supported by visual inspection of deposits in-situ and a selection of laboratory testing including Particle Size Distribution, Optical and Scanning Electron Microscopy and X-ray Diffraction analyses. Two ground models were developed as a result: 1st a 3D geological model (MOVE model) of the stratigraphy found within the study area that explores the influence of local structural processes controlling/affecting these sediments pre-, syn- and post- deposition and 2nd a sequence stratigraphic model (Dionisos Flow model) unveiling stratal geometries of facies at various stages of accretion. The models present a series of sediment distribution maps, localised 3D views and cross-sections that aim to provide a novel approach to assist the geotechnical industry in predicting the likely distribution of the Harwich Formation deposits, decreasing the engineering risks associated with this stratum.Open Acces

    Fiabilité de l’underfill et estimation de la durée de vie d’assemblages microélectroniques

    Get PDF
    Abstract : In order to protect the interconnections in flip-chip packages, an underfill material layer is used to fill the volumes and provide mechanical support between the silicon chip and the substrate. Due to the chip corner geometry and the mismatch of coefficient of thermal expansion (CTE), the underfill suffers from a stress concentration at the chip corners when the temperature is lower than the curing temperature. This stress concentration leads to subsequent mechanical failures in flip-chip packages, such as chip-underfill interfacial delamination and underfill cracking. Local stresses and strains are the most important parameters for understanding the mechanism of underfill failures. As a result, the industry currently relies on the finite element method (FEM) to calculate the stress components, but the FEM may not be accurate enough compared to the actual stresses in underfill. FEM simulations require a careful consideration of important geometrical details and material properties. This thesis proposes a modeling approach that can accurately estimate the underfill delamination areas and crack trajectories, with the following three objectives. The first objective was to develop an experimental technique capable of measuring underfill deformations around the chip corner region. This technique combined confocal microscopy and the digital image correlation (DIC) method to enable tri-dimensional strain measurements at different temperatures, and was named the confocal-DIC technique. This techique was first validated by a theoretical analysis on thermal strains. In a test component similar to a flip-chip package, the strain distribution obtained by the FEM model was in good agreement with the results measured by the confocal-DIC technique, with relative errors less than 20% at chip corners. Then, the second objective was to measure the strain near a crack in underfills. Artificial cracks with lengths of 160 μm and 640 μm were fabricated from the chip corner along the 45° diagonal direction. The confocal-DIC-measured maximum hoop strains and first principal strains were located at the crack front area for both the 160 μm and 640 μm cracks. A crack model was developed using the extended finite element method (XFEM), and the strain distribution in the simulation had the same trend as the experimental results. The distribution of hoop strains were in good agreement with the measured values, when the model element size was smaller than 22 μm to capture the strong strain gradient near the crack tip. The third objective was to propose a modeling approach for underfill delamination and cracking with the effects of manufacturing variables. A deep thermal cycling test was performed on 13 test cells to obtain the reference chip-underfill delamination areas and crack profiles. An artificial neural network (ANN) was trained to relate the effects of manufacturing variables and the number of cycles to first delamination of each cell. The predicted numbers of cycles for all 6 cells in the test dataset were located in the intervals of experimental observations. The growth of delamination was carried out on FEM by evaluating the strain energy amplitude at the interface elements between the chip and underfill. For 5 out of 6 cells in validation, the delamination growth model was consistent with the experimental observations. The cracks in bulk underfill were modelled by XFEM without predefined paths. The directions of edge cracks were in good agreement with the experimental observations, with an error of less than 2.5°. This approach met the goal of the thesis of estimating the underfill initial delamination, areas of delamination and crack paths in actual industrial flip-chip assemblies.Afin de protéger les interconnexions dans les assemblages, une couche de matériau d’underfill est utilisée pour remplir le volume et fournir un support mécanique entre la puce de silicium et le substrat. En raison de la géométrie du coin de puce et de l’écart du coefficient de dilatation thermique (CTE), l’underfill souffre d’une concentration de contraintes dans les coins lorsque la température est inférieure à la température de cuisson. Cette concentration de contraintes conduit à des défaillances mécaniques dans les encapsulations de flip-chip, telles que la délamination interfaciale puce-underfill et la fissuration d’underfill. Les contraintes et déformations locales sont les paramètres les plus importants pour comprendre le mécanisme des ruptures de l’underfill. En conséquent, l’industrie utilise actuellement la méthode des éléments finis (EF) pour calculer les composantes de la contrainte, qui ne sont pas assez précises par rapport aux contraintes actuelles dans l’underfill. Ces simulations nécessitent un examen minutieux de détails géométriques importants et des propriétés des matériaux. Cette thèse vise à proposer une approche de modélisation permettant d’estimer avec précision les zones de délamination et les trajectoires des fissures dans l’underfill, avec les trois objectifs suivants. Le premier objectif est de mettre au point une technique expérimentale capable de mesurer la déformation de l’underfill dans la région du coin de puce. Cette technique, combine la microscopie confocale et la méthode de corrélation des images numériques (DIC) pour permettre des mesures tridimensionnelles des déformations à différentes températures, et a été nommée le technique confocale-DIC. Cette technique a d’abord été validée par une analyse théorique en déformation thermique. Dans un échantillon similaire à un flip-chip, la distribution de la déformation obtenues par le modèle EF était en bon accord avec les résultats de la technique confocal-DIC, avec des erreurs relatives inférieures à 20% au coin de puce. Ensuite, le second objectif est de mesurer la déformation autour d’une fissure dans l’underfill. Des fissures artificielles d’une longueuer de 160 μm et 640 μm ont été fabriquées dans l’underfill vers la direction diagonale de 45°. Les déformations circonférentielles maximales et principale maximale étaient situées aux pointes des fissures correspondantes. Un modèle de fissure a été développé en utilisant la méthode des éléments finis étendue (XFEM), et la distribution des contraintes dans la simuation a montré la même tendance que les résultats expérimentaux. La distribution des déformations circonférentielles maximales était en bon accord avec les valeurs mesurées lorsque la taille des éléments était plus petite que 22 μm, assez petit pour capturer le grand gradient de déformation près de la pointe de fissure. Le troisième objectif était d’apporter une approche de modélisation de la délamination et de la fissuration de l’underfill avec les effets des variables de fabrication. Un test de cyclage thermique a d’abord été effectué sur 13 cellules pour obtenir les zones délaminées entre la puce et l’underfill, et les profils de fissures dans l’underfill, comme référence. Un réseau neuronal artificiel (ANN) a été formé pour établir une liaison entre les effets des variables de fabrication et le nombre de cycles à la délamination pour chaque cellule. Les nombres de cycles prédits pour les 6 cellules de l’ensemble de test étaient situés dans les intervalles d’observations expérimentaux. La croissance de la délamination a été réalisée par l’EF en évaluant l’énergie de la déformation au niveau des éléments interfaciaux entre la puce et l’underfill. Pour 5 des 6 cellules de la validation, le modèle de croissance du délaminage était conforme aux observations expérimentales. Les fissures dans l’underfill ont été modélisées par XFEM sans chemins prédéfinis. Les directions des fissures de bord étaient en bon accord avec les observations expérimentales, avec une erreur inférieure à 2,5°. Cette approche a répondu à la problématique qui consiste à estimer l’initiation des délamination, les zones de délamination et les trajectoires de fissures dans l’underfill pour des flip-chips industriels

    Machine learning for managing structured and semi-structured data

    Get PDF
    As the digitalization of private, commercial, and public sectors advances rapidly, an increasing amount of data is becoming available. In order to gain insights or knowledge from these enormous amounts of raw data, a deep analysis is essential. The immense volume requires highly automated processes with minimal manual interaction. In recent years, machine learning methods have taken on a central role in this task. In addition to the individual data points, their interrelationships often play a decisive role, e.g. whether two patients are related to each other or whether they are treated by the same physician. Hence, relational learning is an important branch of research, which studies how to harness this explicitly available structural information between different data points. Recently, graph neural networks have gained importance. These can be considered an extension of convolutional neural networks from regular grids to general (irregular) graphs. Knowledge graphs play an essential role in representing facts about entities in a machine-readable way. While great efforts are made to store as many facts as possible in these graphs, they often remain incomplete, i.e., true facts are missing. Manual verification and expansion of the graphs is becoming increasingly difficult due to the large volume of data and must therefore be assisted or substituted by automated procedures which predict missing facts. The field of knowledge graph completion can be roughly divided into two categories: Link Prediction and Entity Alignment. In Link Prediction, machine learning models are trained to predict unknown facts between entities based on the known facts. Entity Alignment aims at identifying shared entities between graphs in order to link several such knowledge graphs based on some provided seed alignment pairs. In this thesis, we present important advances in the field of knowledge graph completion. For Entity Alignment, we show how to reduce the number of required seed alignments while maintaining performance by novel active learning techniques. We also discuss the power of textual features and show that graph-neural-network-based methods have difficulties with noisy alignment data. For Link Prediction, we demonstrate how to improve the prediction for unknown entities at training time by exploiting additional metadata on individual statements, often available in modern graphs. Supported with results from a large-scale experimental study, we present an analysis of the effect of individual components of machine learning models, e.g., the interaction function or loss criterion, on the task of link prediction. We also introduce a software library that simplifies the implementation and study of such components and makes them accessible to a wide research community, ranging from relational learning researchers to applied fields, such as life sciences. Finally, we propose a novel metric for evaluating ranking results, as used for both completion tasks. It allows for easier interpretation and comparison, especially in cases with different numbers of ranking candidates, as encountered in the de-facto standard evaluation protocols for both tasks.Mit der rasant fortschreitenden Digitalisierung des privaten, kommerziellen und öffentlichen Sektors werden immer größere Datenmengen verfügbar. Um aus diesen enormen Mengen an Rohdaten Erkenntnisse oder Wissen zu gewinnen, ist eine tiefgehende Analyse unerlässlich. Das immense Volumen erfordert hochautomatisierte Prozesse mit minimaler manueller Interaktion. In den letzten Jahren haben Methoden des maschinellen Lernens eine zentrale Rolle bei dieser Aufgabe eingenommen. Neben den einzelnen Datenpunkten spielen oft auch deren Zusammenhänge eine entscheidende Rolle, z.B. ob zwei Patienten miteinander verwandt sind oder ob sie vom selben Arzt behandelt werden. Daher ist das relationale Lernen ein wichtiger Forschungszweig, der untersucht, wie diese explizit verfügbaren strukturellen Informationen zwischen verschiedenen Datenpunkten nutzbar gemacht werden können. In letzter Zeit haben Graph Neural Networks an Bedeutung gewonnen. Diese können als eine Erweiterung von CNNs von regelmäßigen Gittern auf allgemeine (unregelmäßige) Graphen betrachtet werden. Wissensgraphen spielen eine wesentliche Rolle bei der Darstellung von Fakten über Entitäten in maschinenlesbaren Form. Obwohl große Anstrengungen unternommen werden, so viele Fakten wie möglich in diesen Graphen zu speichern, bleiben sie oft unvollständig, d. h. es fehlen Fakten. Die manuelle Überprüfung und Erweiterung der Graphen wird aufgrund der großen Datenmengen immer schwieriger und muss daher durch automatisierte Verfahren unterstützt oder ersetzt werden, die fehlende Fakten vorhersagen. Das Gebiet der Wissensgraphenvervollständigung lässt sich grob in zwei Kategorien einteilen: Link Prediction und Entity Alignment. Bei der Link Prediction werden maschinelle Lernmodelle trainiert, um unbekannte Fakten zwischen Entitäten auf der Grundlage der bekannten Fakten vorherzusagen. Entity Alignment zielt darauf ab, gemeinsame Entitäten zwischen Graphen zu identifizieren, um mehrere solcher Wissensgraphen auf der Grundlage einiger vorgegebener Paare zu verknüpfen. In dieser Arbeit stellen wir wichtige Fortschritte auf dem Gebiet der Vervollständigung von Wissensgraphen vor. Für das Entity Alignment zeigen wir, wie die Anzahl der benötigten Paare reduziert werden kann, während die Leistung durch neuartige aktive Lerntechniken erhalten bleibt. Wir erörtern auch die Leistungsfähigkeit von Textmerkmalen und zeigen, dass auf Graph-Neural-Networks basierende Methoden Schwierigkeiten mit verrauschten Paar-Daten haben. Für die Link Prediction demonstrieren wir, wie die Vorhersage für unbekannte Entitäten zur Trainingszeit verbessert werden kann, indem zusätzliche Metadaten zu einzelnen Aussagen genutzt werden, die oft in modernen Graphen verfügbar sind. Gestützt auf Ergebnisse einer groß angelegten experimentellen Studie präsentieren wir eine Analyse der Auswirkungen einzelner Komponenten von Modellen des maschinellen Lernens, z. B. der Interaktionsfunktion oder des Verlustkriteriums, auf die Aufgabe der Link Prediction. Außerdem stellen wir eine Softwarebibliothek vor, die die Implementierung und Untersuchung solcher Komponenten vereinfacht und sie einer breiten Forschungsgemeinschaft zugänglich macht, die von Forschern im Bereich des relationalen Lernens bis hin zu angewandten Bereichen wie den Biowissenschaften reicht. Schließlich schlagen wir eine neuartige Metrik für die Bewertung von Ranking-Ergebnissen vor, wie sie für beide Aufgaben verwendet wird. Sie ermöglicht eine einfachere Interpretation und einen leichteren Vergleich, insbesondere in Fällen mit einer unterschiedlichen Anzahl von Kandidaten, wie sie in den de-facto Standardbewertungsprotokollen für beide Aufgaben vorkommen

    Transport and Microrheology of Active Colloids

    Get PDF
    Active colloids are micron-sized particles that self-propel through viscous fluids by converting energy extracted from their environment into mechanical motion. The origin or mechanism of their locomotion can be either biological or synthetic ranging from motile bacteria to artificial phoretic particles. Owing to their ability to self-propel, active colloids are out of thermodynamic equilibrium and exhibit interesting macroscopic or collective dynamics. In particular, active colloids exhibit accumulation at confining boundaries, upstream swimming in Poiseuille flow, and a reduced or negative apparent shear viscosity. My work has been focused on a theoretical and computational understanding of the dynamics of active colloids under the influence of confinement and external fluid flows, which are ubiquitous in biological processes. I consider the transport of active colloids in channel flows, the microrheology of active colloids, and lastly I propose and study a vesicle propulsion system based on the learned principles. A generalized Taylor dispersion theory is developed to study the transport of active colloids in channel flows. I show that the often-observed upstream swimming can be explained by the biased upstream reorientation due to the flow vorticity. The longitudinal dispersion of active colloids includes the classical shear-enhanced dispersion and an active swim diffusivity. Their coupling results in a non-monotonic variation of the dispersivity as a function of the flow speed. To understand the effect of particle shape on the transport of active colloids, a simulation algorithm is developed that is able to faithfully resolve the inelastic collision between an ellipsoidal particle and the channel walls. I show that the collision-induced rotation for active ellipsoids can suppress upstream swimming. I then investigate the particle-tracking microrheology of active colloids. I show that active colloids exhibit a swim-thinning microrheology and a negative microviscosity can be observed when certain hydrodynamic effects are considered. I show that the traditional constant-velocity probe model is not suitable for the quantification of fluctuations in the suspension. To resolve this difficulty, a generalized microrheology model that closely mimics the experimental setup is developed. I conclude by proposing a microscale propulsion system in which active colloids are encapsulated in a vesicle with a semi-permeable membrane that allows water to pass through. By maintaining an asymmetric number density distribution, I show that the vesicle can self-propel through the surrounding viscous fluid.</p

    Consolidation of Urban Freight Transport – Models and Algorithms

    Get PDF
    Urban freight transport is an indispensable component of economic and social life in cities. Compared to other types of transport, however, it contributes disproportionately to the negative impacts of traffic. As a result, urban freight transport is closely linked to social, environmental, and economic challenges. Managing urban freight transport and addressing these issues poses challenges not only for local city administrations but also for companies, such as logistics service providers (LSPs). Numerous policy measures and company-driven initiatives exist in the area of urban freight transport to overcome these challenges. One central approach is the consolidation of urban freight transport. This dissertation focuses on urban consolidation centers (UCCs) which are a widely studied and applied measure in urban freight transport. The fundamental idea of UCCs is to consolidate freight transport across companies in logistics facilities close to an urban area in order to increase the efficiency of vehicles delivering goods within the urban area. Although the concept has been researched and tested for several decades and it was shown that it can reduce the negative externalities of freight transport in cities, in practice many UCCs struggle with a lack of business participation and financial difficulties. This dissertation is primarily focused on the costs and savings associated with the use of UCCs from the perspective of LSPs. The cost-effectiveness of UCC use, which is also referred to as cost attractiveness, can be seen as a crucial condition for LSPs to be interested in using UCC systems. The overall objective of this dissertation is two-fold. First, it aims to develop models to provide decision support for evaluating the cost-effectiveness of using UCCs. Second, it aims to analyze the impacts of urban freight transport regulations and operational characteristics on the cost attractiveness of using UCCs from the perspective of LSPs. In this context, a distinction is made between UCCs that are jointly operated by a group of LSPs and UCCs that are operated by third parties who offer their urban transport service for a fee. The main body of this dissertation is based on three research papers. The first paper focuses on jointly-operated UCCs that are operated by a group of cooperating LSPs. It presents a simulation model to analyze the financial impacts on LSPs participating in such a scheme. In doing so, a particular focus is placed on urban freight transport regulations. A case study is used to analyze the operation of a jointly-operated UCC for scenarios involving three freight transport regulations. The second and third papers take on a different perspective on UCCs by focusing on third-party operated UCCs. In contrast to the first paper, the second and third papers present an evaluation approach in which the decision to use UCCs is integrated with the vehicle route planning of LSPs. In addition to addressing the basic version of this integrated routing problem, known as the vehicle routing problem with transshipment facilities (VRPTF), the second paper presents problem extensions that incorporate time windows, fleet size and mix decisions, and refined objective functions. To heuristically solve the basic problem and the new problem variants, an adaptive large neighborhood search (ALNS) heuristic with embedded local search heuristic and set partitioning problem (SPP) is presented. Furthermore, various factors influencing the cost attractiveness of UCCs, including time windows and usage fees, are analyzed using a real-world case study. The third paper extends the work of the second paper and incorporates daily and entrance-based city toll schemes and enables multi-trip routing. A mixed-integer linear programming (MILP) formulation of the resulting problem is proposed, as well as an ALNS solution heuristic. Moreover, a real-world case study with three European cities is used to analyze the impact of the two city toll systems in different operational contexts

    Optical coherence tomography methods using 2-D detector arrays

    Get PDF
    Optical coherence tomography (OCT) is a non-invasive, non-contact optical technique that allows cross-section imaging of biological tissues with high spatial resolution, high sensitivity and high dynamic range. Standard OCT uses a focused beam to illuminate a point on the target and detects the signal using a single photodetector. To acquire transverse information, transversal scanning of the illumination point is required. Alternatively, multiple OCT channels can be operated in parallel simultaneously; parallel OCT signals are recorded by a two-dimensional (2D) detector array. This approach is known as Parallel-detection OCT. In this thesis, methods, experiments and results using three parallel OCT techniques, including full -field (time-domain) OCT (FF-OCT), full-field swept-source OCT (FF-SS-OCT) and line-field Fourier-domain OCT (LF-FD-OCT), are presented. Several 2D digital cameras of different formats have been used and evaluated in the experiments of different methods. With the LF-FD-OCT method, photography equipment, such as flashtubes and commercial DSLR cameras have been equipped and tested for OCT imaging. The techniques used in FF-OCT and FF-SS-OCT are employed in a novel wavefront sensing technique, which combines OCT methods with a Shack-Hartmann wavefront sensor (SH-WFS). This combination technique is demonstrated capable of measuring depth-resolved wavefront aberrations, which has the potential to extend the applications of SH-WFS in wavefront-guided biomedical imaging techniques
    • …
    corecore