1,272 research outputs found

    App-based feedback on safety to novice drivers: learning and monetary incentives

    Get PDF
    An over-proportionally large number of car crashes is caused by novice drivers. In a field experiment, we investigated whether and how car drivers who had recently obtained their driving license reacted to app-based feedback on their safety-relevant driving behavior (speeding, phone usage, cornering, acceleration and braking). Participants went through a pre-measurement phase during which they did not receive app-based feedback but driving behavior was recorded, a treatment phase during which they received app-based feedback, and a post-measurement phase during which they did not receive app-based feedback but driving behavior was recorded. Before the start of the treatment phase, we randomly assigned participants to two possible treatment groups. In addition to receiving app-based feedback, the participants of one group received monetary incentives to improve their safety-relevant driving behavior, while the participants of the other group did not. At the beginning and at the end of experiment, each participant had to fill out a questionnaire to elicit socio-economic and attitudinal information. We conducted regression analyses to identify socio-economic, attitudinal, and driving-behavior-related variables that explain safety-relevant driving behavior during the pre-measurement phase and the self-chosen intensity of app usage during the treatment phase. For the main objective of our study, we applied regression analyses to identify those variables that explain the potential effect of providing app-based feedback during the treatment phase on safety-relevant driving behavior. Last, we applied statistical tests of differences to identify self-selection and attrition biases in our field experiment. For a sample of 130 novice Austrian drivers, we found moderate improvements in safety-relevant driving skills due to app-based feedback. The improvements were more pronounced under the treatment with monetary incentives, and for participants choosing higher feedback intensities. Moreover, drivers who drove relatively safer before receiving app-based feedback used the app more intensely and, ceteris paribus, higher app use intensity led to improvements in safety-related driving skills. Last, we provide empirical evidence for both self-selection and attrition biases

    From Physical to Cyber: Escalating Protection for Personalized Auto Insurance

    Full text link
    Nowadays, auto insurance companies set personalized insurance rate based on data gathered directly from their customers' cars. In this paper, we show such a personalized insurance mechanism -- wildly adopted by many auto insurance companies -- is vulnerable to exploit. In particular, we demonstrate that an adversary can leverage off-the-shelf hardware to manipulate the data to the device that collects drivers' habits for insurance rate customization and obtain a fraudulent insurance discount. In response to this type of attack, we also propose a defense mechanism that escalates the protection for insurers' data collection. The main idea of this mechanism is to augment the insurer's data collection device with the ability to gather unforgeable data acquired from the physical world, and then leverage these data to identify manipulated data points. Our defense mechanism leveraged a statistical model built on unmanipulated data and is robust to manipulation methods that are not foreseen previously. We have implemented this defense mechanism as a proof-of-concept prototype and tested its effectiveness in the real world. Our evaluation shows that our defense mechanism exhibits a false positive rate of 0.032 and a false negative rate of 0.013.Comment: Appeared in Sensys 201

    Smartphone-based vehicle telematics: a ten-year anniversary

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordJust as it has irrevocably reshaped social life, the fast growth of smartphone ownership is now beginning to revolutionize the driving experience and change how we think about automotive insurance, vehicle safety systems, and traffic research. This paper summarizes the first ten years of research in smartphone-based vehicle telematics, with a focus on user-friendly implementations and the challenges that arise due to the mobility of the smartphone. Notable academic and industrial projects are reviewed, and system aspects related to sensors, energy consumption, and human-machine interfaces are examined. Moreover, we highlight the differences between traditional and smartphone-based automotive navigation, and survey the state of the art in smartphone-based transportation mode classification, vehicular ad hoc networks, cloud computing, driver classification, and road condition monitoring. Future advances are expected to be driven by improvements in sensor technology, evidence of the societal benefits of current implementations, and the establishment of industry standards for sensor fusion and driver assessment

    Smartphone placement within vehicles

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordSmartphone-based driver monitoring is quickly gaining ground as a feasible alternative to competing in-vehicle and aftermarket solutions. Currently the main challenges for data analysts studying smartphone-based driving data stem from the mobility of the smartphone. In this paper, we use kernel-based k-means clustering to infer the placement of smartphones within vehicles. The trip segments are mapped into fifteen different placement clusters. As a part of the presented framework, we discuss practical considerations concerning e.g., trip segmentation, cluster initialization, and parameter selection. The proposed method is evaluated on more than 10 000 kilometers of driving data collected from approximately 200 drivers. To validate the interpretation of the clusters, we compare the data associated with different clusters and relate the results to real-world knowledge of driving behavior. The clusters associated with the label “Held by hand” are shown to display high gyroscope variances, low maximum speeds, low correlations between the measurements from smartphone-embedded and vehicle-fixed accelerometers, and short segment durations

    Risk assessment of vehicle cornering events in GNSS data driven insurance telematics

    Full text link
    We propose a framework for the detection of dangerous vehicle cornering events, based on statistics related to the no-sliding and no-rollover conditions. The input variables are estimated using an unscented Kalman filter applied to global navigation satellite system (GNSS) measurements of position, speed, and bearing. The resulting test statistic is evaluated in a field study where three smartphones are used as measurement probes. A general framework for performance evaluation and estimator calibration is presented as depending on a generic loss function. Further, we introduce loss functions designed for applications aiming to either minimize the number of missed detections and false alarms, or to estimate the risk level in each cornering event. Finally, performance characteristics of the estimator is presented as depending on the detection threshold, and on design parameters describing the driving behavior. Since the estimation only uses GNSS measurements, the framework is particularly well-suited for smartphone-based insurance telematics applications, aiming to avoid the logistic and monetary costs associated with e.g., on-board-diagnostics or black-box dependent solutions. The design of the estimation algorithm allows for instant feedback to be given to the driver, and hence, supports the inclusion of real time value added services in usage-basedinsurance programs.QC 20150316</p

    EXPLORING THREAT-SPECIFIC PRIVACY ASSURANCES IN THE CONTEXT OF CONNECTED VEHICLE APPLICATIONS

    Get PDF
    Connected vehicles enable a wide range of use cases, often facilitated by smartphone apps and involving extensive processing of driving-related data. Since information about actual driving behavior or even daily routines can be derived from this data, the question of privacy arises. We explore the impact of privacy assurances on driving data sharing concerns. Specifically, we consider two data-intensive cases: usage-based insurance and traffic hazard warning apps. We conducted two experimental comparisons to investigate whether and how privacy-related perceptions about vehicle data sharing can be altered by different types of text-based privacy assurances on fictional app store pages. Our results are largely inconclusive, and we did not find clear evidence that text-based privacy guarantees can significantly alter privacy concerns and download intentions. Our results suggest that general and threat-specific privacy assurance statements likely yield no or only negligible benefits for providers of connected vehicle apps regarding user perceptions

    A Choquet Fuzzy Integral Vertical Bagging Classifier for Mobile Telematics Data Analysis

    Full text link
    © 2019 IEEE. Mobile app development in recent years has resulted in new products and features to improve human life. Mobile telematics is one such development that encompasses multidisciplinary fields for transportation safety. The application of mobile telematics has been explored in many areas, such as insurance and road safety. However, to the best of our knowledge, its application in gender detection has not been explored. This paper proposes a Choquet fuzzy integral vertical bagging classifier that detects gender through mobile telematics. In this model, different random forest classifiers are trained by randomly generated features with rough set theory, and the top three classifiers are fused using the Choquet fuzzy integral. The model is implemented and evaluated on a real dataset. The empirical results indicate that the Choquet fuzzy integral vertical bagging classifier outperforms other classifiers

    Can Telematics Improve Driving Style? The Use of Behavioural Data in Motor Insurance

    Full text link
    The use of behavioural data in insurance is loaded with promises and unresolved issues. This paper explores the related opportunities and challenges analysing the use of telematics data in third-party liability motor insurance. Behavioural data are used not only to refine the risk profile of policyholders, but also to implement innovative coaching strategies, feeding back to the drivers the aggregated information obtained from the data. The purpose is to encourage an improvement in their driving style. Our research explores the effectiveness of coaching on the basis of an empirical investigation of the dataset of a company selling telematics motor insurance policies. The results of our quantitative analysis show that this effectiveness crucially depends on the propensity of policyholders to engage with the telematics app. We observe engagement as an additional kind of behaviour, producing second-order behavioural data that can also be recorded and strategically used by insurance companies. The conclusions discuss potential advantages and risks connected with this extended interpretation of behavioural data.Comment: Paper sent for publication on a journal. This is a preliminary version, updated versions will be uploade
    • …
    corecore