141 research outputs found

    Development of new intelligent autonomous robotic assistant for hospitals

    Get PDF
    Continuous technological development in modern societies has increased the quality of life and average life-span of people. This imposes an extra burden on the current healthcare infrastructure, which also creates the opportunity for developing new, autonomous, assistive robots to help alleviate this extra workload. The research question explored the extent to which a prototypical robotic platform can be created and how it may be implemented in a hospital environment with the aim to assist the hospital staff with daily tasks, such as guiding patients and visitors, following patients to ensure safety, and making deliveries to and from rooms and workstations. In terms of major contributions, this thesis outlines five domains of the development of an actual robotic assistant prototype. Firstly, a comprehensive schematic design is presented in which mechanical, electrical, motor control and kinematics solutions have been examined in detail. Next, a new method has been proposed for assessing the intrinsic properties of different flooring-types using machine learning to classify mechanical vibrations. Thirdly, the technical challenge of enabling the robot to simultaneously map and localise itself in a dynamic environment has been addressed, whereby leg detection is introduced to ensure that, whilst mapping, the robot is able to distinguish between people and the background. The fourth contribution is geometric collision prediction into stabilised dynamic navigation methods, thus optimising the navigation ability to update real-time path planning in a dynamic environment. Lastly, the problem of detecting gaze at long distances has been addressed by means of a new eye-tracking hardware solution which combines infra-red eye tracking and depth sensing. The research serves both to provide a template for the development of comprehensive mobile assistive-robot solutions, and to address some of the inherent challenges currently present in introducing autonomous assistive robots in hospital environments.Open Acces

    Explainable shared control in assistive robotics

    Get PDF
    Shared control plays a pivotal role in designing assistive robots to complement human capabilities during everyday tasks. However, traditional shared control relies on users forming an accurate mental model of expected robot behaviour. Without this accurate mental image, users may encounter confusion or frustration whenever their actions do not elicit the intended system response, forming a misalignment between the respective internal models of the robot and human. The Explainable Shared Control paradigm introduced in this thesis attempts to resolve such model misalignment by jointly considering assistance and transparency. There are two perspectives of transparency to Explainable Shared Control: the human's and the robot's. Augmented reality is presented as an integral component that addresses the human viewpoint by visually unveiling the robot's internal mechanisms. Whilst the robot perspective requires an awareness of human "intent", and so a clustering framework composed of a deep generative model is developed for human intention inference. Both transparency constructs are implemented atop a real assistive robotic wheelchair and tested with human users. An augmented reality headset is incorporated into the robotic wheelchair and different interface options are evaluated across two user studies to explore their influence on mental model accuracy. Experimental results indicate that this setup facilitates transparent assistance by improving recovery times from adverse events associated with model misalignment. As for human intention inference, the clustering framework is applied to a dataset collected from users operating the robotic wheelchair. Findings from this experiment demonstrate that the learnt clusters are interpretable and meaningful representations of human intent. This thesis serves as a first step in the interdisciplinary area of Explainable Shared Control. The contributions to shared control, augmented reality and representation learning contained within this thesis are likely to help future research advance the proposed paradigm, and thus bolster the prevalence of assistive robots.Open Acces

    Driver lane change intention inference using machine learning methods.

    Get PDF
    Lane changing manoeuvre on highway is a highly interactive task for human drivers. The intelligent vehicles and the advanced driver assistance systems (ADAS) need to have proper awareness of the traffic context as well as the driver. The ADAS also need to understand the driver potential intent correctly since it shares the control authority with the human driver. This study provides a research on the driver intention inference, particular focus on the lane change manoeuvre on highways. This report is organised in a paper basis, where each chapter corresponding to a publication, which is submitted or to be submitted. Part â…  introduce the motivation and general methodology framework for this thesis. Part â…ˇ includes the literature survey and the state-of-art of driver intention inference. Part â…˘ contains the techniques for traffic context perception that focus on the lane detection. A literature review on lane detection techniques and its integration with parallel driving framework is proposed. Next, a novel integrated lane detection system is designed. Part â…Ł contains two parts, which provides the driver behaviour monitoring system for normal driving and secondary tasks detection. The first part is based on the conventional feature selection methods while the second part introduces an end-to-end deep learning framework. The design and analysis of driver lane change intention inference system for the lane change manoeuvre is proposed in Part â…¤. Finally, discussions and conclusions are made in Part â…Ą. A major contribution of this project is to propose novel algorithms which accurately model the driver intention inference process. Lane change intention will be recognised based on machine learning (ML) methods due to its good reasoning and generalizing characteristics. Sensors in the vehicle are used to capture context traffic information, vehicle dynamics, and driver behaviours information. Machine learning and image processing are the techniques to recognise human driver behaviour.PhD in Transpor
    • …
    corecore