1,240 research outputs found

    Holistic Vehicle Instrumentation for Assessing Driver Driving Styles

    Get PDF
    Nowadays, autonomous vehicles are increasing, and the driving scenario that includes both autonomous and human-driven vehicles is a fact. Knowing the driving styles of drivers in the process of automating vehicles is interest in order to make driving as natural as possible. To this end, this article presents a first approach to the design of a controller for the braking system capable of imitating the different manoeuvres that any driver performs while driving. With this aim, different experimental tests have been carried out with a vehicle instrumented with sensors capable of providing real-time information related to the braking system. The experimental tests consist of reproducing a series of braking manoeuvres at different speeds on a flat floor track following a straight path. The tests distinguish between three types of braking manoeuvre: maintained, progressive and emergency braking, which cover all the driving circumstances in which the braking system may intervene. This article presents an innovative approach to characterise braking types thanks to the methodology of analysing the data obtained by sensors during experimental tests. The characterisation of braking types makes it possible to dynamically classify three driving styles: cautious, normal and aggressive. The proposed classifications allow it possible to identify the driving styles on the basis of the pressure in the hydraulic brake circuit, the force exerted by the driver on the brake pedal, the longitudinal deceleration and the braking power, knowing in all cases the speed of the vehicle. The experiments are limited by the fact that there are no other vehicles, obstacles, etc. in the vehicle's environment, but in this article the focus is exclusively on characterising a driver with methods that use the vehicle's dynamic responses measured by on-board sensors. The results of this study can be used to define the driving style of an autonomous vehicle

    Driver and Passenger Identification from Smartphone Data

    Get PDF
    The objective of this paper is twofold. First, it presents a brief overview of existing driver and passenger identification or recognition approaches which rely on smartphone data. This includes listing the typically available sensory measurements and highlighting a few key practical considerations for automotive settings. Second, a simple identification method that utilises the smartphone inertial measurements and, possibly, doors signal is proposed. It is based on analysing the user behaviour during entry, namely the direction of turning, and extracting relevant salient features, which are distinctive depending on the side of entry to the vehicle. This is followed by applying a suitable classifier and decision criterion. Experimental data is shown to demonstrate the usefulness and effectiveness of the introduced probabilistic, low-complexity, identification technique.Jaguar Land Rover under the Centre for Advanced Photonics and Electronics (CAPE) agreement

    On driver behavior recognition for increased safety:A roadmap

    Get PDF
    Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced

    A Machine Learning Approach for Driver Identification Based on CAN-BUS Sensor Data

    Full text link
    Driver identification is a momentous field of modern decorated vehicles in the controller area network (CAN-BUS) perspective. Many conventional systems are used to identify the driver. One step ahead, most of the researchers use sensor data of CAN-BUS but there are some difficulties because of the variation of the protocol of different models of vehicle. Our aim is to identify the driver through supervised learning algorithms based on driving behavior analysis. To determine the driver, a driver verification technique is proposed that evaluate driving pattern using the measurement of CAN sensor data. In this paper on-board diagnostic (OBD-II) is used to capture the data from the CAN-BUS sensor and the sensors are listed under SAE J1979 statement. According to the service of OBD-II, drive identification is possible. However, we have gained two types of accuracy on a complete data set with 10 drivers and a partial data set with two drivers. The accuracy is good with less number of drivers compared to the higher number of drivers. We have achieved statistically significant results in terms of accuracy in contrast to the baseline algorith
    • …
    corecore