4,720 research outputs found

    Driver recognition using gaussian mixture models and decision fusion techniques

    Get PDF
    In this paper we present our research in driver recognition. The goal of this study is to investigate the performance of different classifier fusion techniques in a driver recognition scenario. We are using solely driving behavior signals such as break and accelerator pedal pressure, engine RPM, vehicle speed; steering wheel angle for identifying the driver identities. We modeled each driver using Gaussian Mixture Models, obtained posterior probabilities of identities and combined these scores using different fixed mid trainable (adaptive) fusion methods. We observed error rates is low as 0.35% in recognition of 100 drivers using trainable combiners. We conclude that the fusion of multi-modal classifier results is very successful in biometric recognition of a person in a car setting.Publisher's Versio

    Multimodal person recognition for human-vehicle interaction

    Get PDF
    Next-generation vehicles will undoubtedly feature biometric person recognition as part of an effort to improve the driving experience. Today's technology prevents such systems from operating satisfactorily under adverse conditions. A proposed framework for achieving person recognition successfully combines different biometric modalities, borne out in two case studies

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page
    corecore