6,927 research outputs found

    An Improved Fatigue Detection System Based on Behavioral Characteristics of Driver

    Full text link
    In recent years, road accidents have increased significantly. One of the major reasons for these accidents, as reported is driver fatigue. Due to continuous and longtime driving, the driver gets exhausted and drowsy which may lead to an accident. Therefore, there is a need for a system to measure the fatigue level of driver and alert him when he/she feels drowsy to avoid accidents. Thus, we propose a system which comprises of a camera installed on the car dashboard. The camera detect the driver's face and observe the alteration in its facial features and uses these features to observe the fatigue level. Facial features include eyes and mouth. Principle Component Analysis is thus implemented to reduce the features while minimizing the amount of information lost. The parameters thus obtained are processed through Support Vector Classifier for classifying the fatigue level. After that classifier output is sent to the alert unit.Comment: 4 pages, 2 figures, edited version of published paper in IEEE ICITE 201

    Efficient and Robust Driver Fatigue Detection Framework Based on the Visual Analysis of Eye States

    Get PDF
    Fatigue detection based on vision is widely employed in vehicles due to its real-time and reliable detection results. With the coronavirus disease (COVID-19) outbreak, many proposed detection systems based on facial characteristics would be unreliable due to the face covering with the mask. In this paper, we propose a robust visual-based fatigue detection system for monitoring drivers, which is robust regarding the coverings of masks, changing illumination and head movement of drivers. Our system has three main modules: face key point alignment, fatigue feature extraction and fatigue measurement based on fused features. The innovative core techniques are described as follows: (1) a robust key point alignment algorithm by fusing global face information and regional eye information, (2) dynamic threshold methods to extract fatigue characteristics and (3) a stable fatigue measurement based on fusing percentage of eyelid closure (PERCLOS) and proportion of long closure duration blink (PLCDB). The excellent performance of our proposed algorithm and methods are verified in experiments. The experimental results show that our key point alignment algorithm is robust to different scenes, and the performance of our proposed fatigue measurement is more reliable due to the fusion of PERCLOS and PLCDB

    A Method for Recognizing Fatigue Driving Based on Dempster-Shafer Theory and Fuzzy Neural Network

    Get PDF
    This study proposes a method based on Dempster-Shafer theory (DST) and fuzzy neural network (FNN) to improve the reliability of recognizing fatigue driving. This method measures driving states using multifeature fusion. First, FNN is introduced to obtain the basic probability assignment (BPA) of each piece of evidence given the lack of a general solution to the definition of BPA function. Second, a modified algorithm that revises conflict evidence is proposed to reduce unreasonable fusion results when unreliable information exists. Finally, the recognition result is given according to the combination of revised evidence based on Dempster’s rule. Experiment results demonstrate that the recognition method proposed in this paper can obtain reasonable results with the combination of information given by multiple features. The proposed method can also effectively and accurately describe driving states

    A Comparative Emotions-detection Review for Non-intrusive Vision-Based Facial Expression Recognition

    Get PDF
    Affective computing advocates for the development of systems and devices that can recognize, interpret, process, and simulate human emotion. In computing, the field seeks to enhance the user experience by finding less intrusive automated solutions. However, initiatives in this area focus on solitary emotions that limit the scalability of the approaches. Further reviews conducted in this area have also focused on solitary emotions, presenting challenges to future researchers when adopting these recommendations. This review aims at highlighting gaps in the application areas of Facial Expression Recognition Techniques by conducting a comparative analysis of various emotion detection datasets, algorithms, and results provided in existing studies. The systematic review adopted the PRISMA model and analyzed eighty-three publications. Findings from the review show that different emotions call for different Facial Expression Recognition techniques, which should be analyzed when conducting Facial Expression Recognition. Keywords: Facial Expression Recognition, Emotion Detection, Image Processing, Computer Visio

    Drowsy Driver Detection System

    Get PDF
    Driver weariness is one of the key causes of road mishaps in the world. Detecting the drowsiness of the driver can be one of the surest ways of quantifying driver fatigue. In this project we aim to develop an archetype drowsiness detection system. This mechanism works by monitoring the eyes of the driver and sounding an alarm when he/she feels heavy eyed. The system so constructed is a non-intrusive real-time observing system. The primacy is on improving the safety of the driver. In this mechanism the eye blink of the driver is detected. If the driver’s eyes remain closed for more than a certain span of time, the driver is believed to be tired and an alarm is sounded. The programming for this is carried out in OpenCV using the Haar cascade library for the detection of facial features
    corecore