234 research outputs found

    Driver Fatigue Detection using Mean Intensity, SVM, and SIFT

    Get PDF
    Driver fatigue is one of the major causes of accidents. This has increased the need for driver fatigue detection mechanism in the vehicles to reduce human and vehicle loss during accidents. In the proposed scheme, we capture videos from a camera mounted inside the vehicle. From the captured video, we localize the eyes using Viola-Jones algorithm. Once the eyes have been localized, they are classified as open or closed using three different techniques namely mean intensity, SVM, and SIFT. If eyes are found closed for a considerable amount of time, it indicates fatigue and consequently an alarm is generated to alert the driver. Our experiments show that SIFT outperforms both mean intensity and SVM, achieving an average accuracy of 97.45% on a dataset of five videos, each having a length of two minutes

    Driver drowsiness detection in facial images

    Get PDF
    Driver fatigue is a significant factor in a large number of vehicle accidents. Thus, drowsy driver alert systems are meant to reduce the main cause of traffic accidents. Different approaches have been developed to tackle with the fatigue detection problem. Though most reliable techniques to asses fatigue involve the use of physical sensors to monitor drivers, they can be too intrusive and are less likely to be adopted by the car industry. A relatively new and effective trend consists on facial image analysis from video cameras that monitor drivers. How to extract effective features of fatigue from images is important for many image processing applications. This project proposes a face descriptor that can be used to detect driver fatigue in static frames. This descriptor represents each frame of a sequence as a pyramid of scaled images that are divided into non-overlapping blocks of equal size. The pyramid of images is combined with three different image descriptors. The final descriptors are filtered out using feature selection and a Support Vector Machine is used to predict the drowsiness state. The proposed method is tested on the public NTHUDDD dataset, which is the state-of-the-art dataset on driver drowsiness detection

    Editor’s Note

    Get PDF
    This special issue has been designed with the primary objective of demonstrating the diversity of fields where AI is used and, consequently, how it is gaining increasing importance as a tool for analysis and research. In this sense, there are works related to the following topics: the use of AI with the IoT, campaign management, topic models and fusion methods, sales forecasting, price forecasting for electricity market, NLP techniques in computational medicine, evaluation of patient triage in hospital emergency settings, algorithms for solving the assignment problem, scheduling strategy for scientific workflow, driver fatigue detection mechanisms, virtual reality and specialized training, image segmentation, web service selection, multimedia documents adaptation, 3D navigation in virtual environments, multi-criteria decision-making methods and emotional states classification

    Face pose estimation with automatic 3D model creation for a driver inattention monitoring application

    Get PDF
    Texto en inglés y resumen en inglés y españolRecent studies have identified inattention (including distraction and drowsiness) as the main cause of accidents, being responsible of at least 25% of them. Driving distraction has been less studied, since it is more diverse and exhibits a higher risk factor than fatigue. In addition, it is present over half of the inattention involved crashes. The increased presence of In Vehicle Information Systems (IVIS) adds to the potential distraction risk and modifies driving behaviour, and thus research on this issue is of vital importance. Many researchers have been working on different approaches to deal with distraction during driving. Among them, Computer Vision is one of the most common, because it allows for a cost effective and non-invasive driver monitoring and sensing. Using Computer Vision techniques it is possible to evaluate some facial movements that characterise the state of attention of a driver. This thesis presents methods to estimate the face pose and gaze direction of a person in real-time, using a stereo camera as a basic for assessing driver distractions. The methods are completely automatic and user-independent. A set of features in the face are identified at initialisation, and used to create a sparse 3D model of the face. These features are tracked from frame to frame, and the model is augmented to cover parts of the face that may have been occluded before. The algorithm is designed to work in a naturalistic driving simulator, which presents challenging low light conditions. We evaluate several techniques to detect features on the face that can be matched between cameras and tracked with success. Well-known methods such as SURF do not return good results, due to the lack of salient points in the face, as well as the low illumination of the images. We introduce a novel multisize technique, based on Harris corner detector and patch correlation. This technique benefits from the better performance of small patches under rotations and illumination changes, and the more robust correlation of the bigger patches under motion blur. The head rotates in a range of ±90º in the yaw angle, and the appearance of the features change noticeably. To deal with these changes, we implement a new re-registering technique that captures new textures of the features as the face rotates. These new textures are incorporated to the model, which mixes the views of both cameras. The captures are taken at regular angle intervals for rotations in yaw, so that each texture is only used in a range of ±7.5º around the capture angle. Rotations in pitch and roll are handled using affine patch warping. The 3D model created at initialisation can only take features in the frontal part of the face, and some of these may occlude during rotations. The accuracy and robustness of the face tracking depends on the number of visible points, so new points are added to the 3D model when new parts of the face are visible from both cameras. Bundle adjustment is used to reduce the accumulated drift of the 3D reconstruction. We estimate the pose from the position of the features in the images and the 3D model using POSIT or Levenberg-Marquardt. A RANSAC process detects incorrectly tracked points, which are not considered for pose estimation. POSIT is faster, while LM obtains more accurate results. Using the model extension and the re-registering technique, we can accurately estimate the pose in the full head rotation range, with error levels that improve the state of the art. A coarse eye direction is composed with the face pose estimation to obtain the gaze and driver's fixation area, parameter which gives much information about the distraction pattern of the driver. The resulting gaze estimation algorithm proposed in this thesis has been tested on a set of driving experiments directed by a team of psychologists in a naturalistic driving simulator. This simulator mimics conditions present in real driving, including weather changes, manoeuvring and distractions due to IVIS. Professional drivers participated in the tests. The driver?s fixation statistics obtained with the proposed system show how the utilisation of IVIS influences the distraction pattern of the drivers, increasing reaction times and affecting the fixation of attention on the road and the surroundings

    Face pose estimation with automatic 3D model creation for a driver inattention monitoring application

    Get PDF
    Texto en inglés y resumen en inglés y españolRecent studies have identified inattention (including distraction and drowsiness) as the main cause of accidents, being responsible of at least 25% of them. Driving distraction has been less studied, since it is more diverse and exhibits a higher risk factor than fatigue. In addition, it is present over half of the inattention involved crashes. The increased presence of In Vehicle Information Systems (IVIS) adds to the potential distraction risk and modifies driving behaviour, and thus research on this issue is of vital importance. Many researchers have been working on different approaches to deal with distraction during driving. Among them, Computer Vision is one of the most common, because it allows for a cost effective and non-invasive driver monitoring and sensing. Using Computer Vision techniques it is possible to evaluate some facial movements that characterise the state of attention of a driver. This thesis presents methods to estimate the face pose and gaze direction of a person in real-time, using a stereo camera as a basic for assessing driver distractions. The methods are completely automatic and user-independent. A set of features in the face are identified at initialisation, and used to create a sparse 3D model of the face. These features are tracked from frame to frame, and the model is augmented to cover parts of the face that may have been occluded before. The algorithm is designed to work in a naturalistic driving simulator, which presents challenging low light conditions. We evaluate several techniques to detect features on the face that can be matched between cameras and tracked with success. Well-known methods such as SURF do not return good results, due to the lack of salient points in the face, as well as the low illumination of the images. We introduce a novel multisize technique, based on Harris corner detector and patch correlation. This technique benefits from the better performance of small patches under rotations and illumination changes, and the more robust correlation of the bigger patches under motion blur. The head rotates in a range of ±90º in the yaw angle, and the appearance of the features change noticeably. To deal with these changes, we implement a new re-registering technique that captures new textures of the features as the face rotates. These new textures are incorporated to the model, which mixes the views of both cameras. The captures are taken at regular angle intervals for rotations in yaw, so that each texture is only used in a range of ±7.5º around the capture angle. Rotations in pitch and roll are handled using affine patch warping. The 3D model created at initialisation can only take features in the frontal part of the face, and some of these may occlude during rotations. The accuracy and robustness of the face tracking depends on the number of visible points, so new points are added to the 3D model when new parts of the face are visible from both cameras. Bundle adjustment is used to reduce the accumulated drift of the 3D reconstruction. We estimate the pose from the position of the features in the images and the 3D model using POSIT or Levenberg-Marquardt. A RANSAC process detects incorrectly tracked points, which are not considered for pose estimation. POSIT is faster, while LM obtains more accurate results. Using the model extension and the re-registering technique, we can accurately estimate the pose in the full head rotation range, with error levels that improve the state of the art. A coarse eye direction is composed with the face pose estimation to obtain the gaze and driver's fixation area, parameter which gives much information about the distraction pattern of the driver. The resulting gaze estimation algorithm proposed in this thesis has been tested on a set of driving experiments directed by a team of psychologists in a naturalistic driving simulator. This simulator mimics conditions present in real driving, including weather changes, manoeuvring and distractions due to IVIS. Professional drivers participated in the tests. The driver?s fixation statistics obtained with the proposed system show how the utilisation of IVIS influences the distraction pattern of the drivers, increasing reaction times and affecting the fixation of attention on the road and the surroundings

    Action Units and Their Cross-Correlations for Prediction of Cognitive Load during Driving

    Get PDF
    Driving requires the constant coordination of many body systems and full attention of the person. Cognitive distraction (subsidiary mental load) of the driver is an important factor that decreases attention and responsiveness, which may result in human error and accidents. In this paper, we present a study of facial expressions of such mental diversion of attention. First, we introduce a multi-camera database of 46 people recorded while driving a simulator in two conditions, baseline and induced cognitive load using a secondary task. Then, we present an automatic system to differentiate between the two conditions, where we use features extracted from Facial Action Unit (AU) values and their cross-correlations in order to exploit recurring synchronization and causality patterns. Both the recording and detection system are suitable for integration in a vehicle and a real-world application, e.g. an early warning system. We show that when the system is trained individually on each subject we achieve a mean accuracy and F-score of ~95%, and for the subject independent tests ~68% accuracy and ~66% F-score, with person-specific normalization to handle subject-dependency. Based on the results, we discuss the universality of the facial expressions of such states and possible real-world uses of the system

    Driver drowsiness detection in facial images

    Get PDF
    Driver fatigue is a significant factor in a large number of vehicle accidents. Thus, drowsy driver alert systems are meant to reduce the main cause of traffic accidents. Different approaches have been developed to tackle with the fatigue detection problem. Though most reliable techniques to asses fatigue involve the use of physical sensors to monitor drivers, they can be too intrusive and are less likely to be adopted by the car industry. A relatively new and effective trend consists on facial image analysis from video cameras that monitor drivers. How to extract effective features of fatigue from images is important for many image processing applications. This project proposes a face descriptor that can be used to detect driver fatigue in static frames. This descriptor represents each frame of a sequence as a pyramid of scaled images that are divided into non-overlapping blocks of equal size. The pyramid of images is combined with three different image descriptors. The final descriptors are filtered out using feature selection and a Support Vector Machine is used to predict the drowsiness state. The proposed method is tested on the public NTHUDDD dataset, which is the state-of-the-art dataset on driver drowsiness detection

    Individual and Inter-related Action Unit Detection in Videos for Affect Recognition

    Get PDF
    The human face has evolved to become the most important source of non-verbal information that conveys our affective, cognitive and mental state to others. Apart from human to human communication facial expressions have also become an indispensable component of human-machine interaction (HMI). Systems capable of understanding how users feel allow for a wide variety of applications in medical, learning, entertainment and marketing technologies in addition to advancements in neuroscience and psychology research and many others. The Facial Action Coding System (FACS) has been built to objectively define and quantify every possible facial movement through what is called Action Units (AU), each representing an individual facial action. In this thesis we focus on the automatic detection and exploitation of these AUs using novel appearance representation techniques as well as incorporation of the prior co-occurrence information between them. Our contributions can be grouped in three parts. In the first part, we propose to improve the detection accuracy of appearance features based on local binary patterns (LBP) for AU detection in videos. For this purpose, we propose two novel methodologies. The first one uses three fundamental image processing tools as a pre-processing step prior to the application of the LBP transform on the facial texture. These tools each enhance the descriptive ability of LBP by emphasizing different transient appearance characteristics, and are proven to increase the AU detection accuracy significantly in our experiments. The second one uses multiple local curvature Gabor binary patterns (LCGBP) for the same problem and achieves state-of-the-art performance on a dataset of mostly posed facial expressions. The curvature information of the face, as well as the proposed multiple filter size scheme is very effective in recognizing these individual facial actions. In the second part, we propose to take advantage of the co-occurrence relation between the AUs, that we can learn through training examples. We use this information in a multi-label discriminant Laplacian embedding (DLE) scheme to train our system with SIFT features extracted around the salient and transient landmarks on the face. The system is first validated on a challenging (containing lots of occlusions and head pose variations) dataset without the DLE, then we show the performance of the full system on the FERA 2015 challenge on AU occurence detection. The challenge consists of two difficult datasets that contain spontaneous facial actions at different intensities. We demonstrate that our proposed system achieves the best results on these datasets for detecting AUs. The third and last part of the thesis contains an application on how this automatic AU detection system can be used in real-life situations, particularly for detecting cognitive distraction. Our contribution in this part is two-fold: First, we present a novel visual database of people driving a simulator while being induced visual and cognitive distraction via secondary tasks. The subjects have been recorded using three near-infrared camera-lighting systems, which makes it a very suitable configuration to use in real driving conditions, i.e. with large head pose and ambient light variations. Secondly, we propose an original framework to automatically discriminate cognitive distraction sequences from baseline sequences by extracting features from continuous AU signals and by exploiting the cross-correlations between them. We achieve a very high classification accuracy in our subject-based experiments and a lower yet acceptable performance for the subject-independent tests. Based on these results we discuss how facial expressions related to this complex mental state are individual, rather than universal, and also how the proposed system can be used in a vehicle to help decrease human error in traffic accidents
    • …
    corecore