798 research outputs found

    An Overview of Self-Adaptive Technologies Within Virtual Reality Training

    Get PDF
    This overview presents the current state-of-the-art of self-adaptive technologies within virtual reality (VR) training. Virtual reality training and assessment is increasingly used for five key areas: medical, industrial & commercial training, serious games, rehabilitation and remote training such as Massive Open Online Courses (MOOCs). Adaptation can be applied to five core technologies of VR including haptic devices, stereo graphics, adaptive content, assessment and autonomous agents. Automation of VR training can contribute to automation of actual procedures including remote and robotic assisted surgery which reduces injury and improves accuracy of the procedure. Automated haptic interaction can enable tele-presence and virtual artefact tactile interaction from either remote or simulated environments. Automation, machine learning and data driven features play an important role in providing trainee-specific individual adaptive training content. Data from trainee assessment can form an input to autonomous systems for customised training and automated difficulty levels to match individual requirements. Self-adaptive technology has been developed previously within individual technologies of VR training. One of the conclusions of this research is that while it does not exist, an enhanced portable framework is needed and it would be beneficial to combine automation of core technologies, producing a reusable automation framework for VR training

    Building trust in autonomous vehicles: Role of virtual reality driving simulators in HMI design

    Get PDF
    The investigation of factors contributing at making humans trust Autonomous Vehicles (AVs) will play a fundamental role in the adoption of such technology. The user's ability to form a mental model of the AV, which is crucial to establish trust, depends on effective user-vehicle communication; thus, the importance of Human-Machine Interaction (HMI) is poised to increase. In this work, we propose a methodology to validate the user experience in AVs based on continuous, objective information gathered from physiological signals, while the user is immersed in a Virtual Reality-based driving simulation. We applied this methodology to the design of a head-up display interface delivering visual cues about the vehicle' sensory and planning systems. Through this approach, we obtained qualitative and quantitative evidence that a complete picture of the vehicle's surrounding, despite the higher cognitive load, is conducive to a less stressful experience. Moreover, after having been exposed to a more informative interface, users involved in the study were also more willing to test a real AV. The proposed methodology could be extended by adjusting the simulation environment, the HMI and/or the vehicle's Artificial Intelligence modules to dig into other aspects of the user experience

    In Darwin’s Garden: an evolutionary exploration of augmented reality in practice

    Get PDF
    This book is part of the Springer Advanced Information and Knowledge Processing Series and will be published under Springer's Open Access policy.This chapter discusses the rapid developments in augmented reality and mixed reality technologies, from a practitioner’s perspective of making the augmented reality sculptural work In Darwin’s Garden. From its conception in 2012, to its exhibition at Carbon Meets Silicon II in 2017, the advances in augmented reality technology led to an interplay between the goal of the creators and the technological realisation of that vision. The art, design and technology involved, generated a reactive process that was mired in external influences as the accessibility to augmented reality became commercially valuable and subsequently restricted. This chapter will be of interest to anyone who wants to understand more about the possibilities, technologies and processes involved in realising mixed reality practice and about the commercial culture that supports it

    A framework study on the use of immersive XR technologies in the cultural heritage domain

    Get PDF
    Most cultural promotion and dissemination are nowadays performed through the digitization of heritage sites and museums, a necessary requirement to meet the new needs of the public. Augmented Reality (AR), Mixed Reality (MR), and Virtual Reality (VR) have the potential to improve the experience quality and educational effect of these sites by stimulating users’ senses in a more natural and vivid way. In this respect, head-mounted display (HMD) devices allow visitors to enhance the experience of cultural sites by digitizing information and integrating additional virtual cues about cultural artifacts, resulting in a more immersive experience that engages the visitor both physically and emotionally. This study contributes to the development and incorporation of AR, MR, and VR applications in the cultural heritage domain by providing an overview of relevant studies utilizing fully immersive systems, such as headsets and CAVE systems, emphasizing the advantages that they bring when compared to handheld devices. We propose a framework study to identify the key features of headset-based Extended Reality (XR) technologies used in the cultural heritage domain that boost immersion, sense of presence, and agency. Furthermore, we highlight core characteristics that favor the adoption of these systems over more traditional solutions (e.g., handheld devices), as well as unsolved issues that must be addressed to improve the guests’ experience and the appreciation of the cultural heritage. An extensive search of Google Scholar, Scopus, IEEE Xplore, ACM Digital Library, and Wiley Online Library databases was conducted, including papers published from January 2018 to September 2022. To improve review reporting, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used. Sixty-five papers met the inclusion criteria and were classified depending on the study’s purpose: education, entertainment, edutainment, touristic guidance systems, accessibility, visitor profiling, and management. Immersive cultural heritage systems allow visitors to feel completely immersed and present in the virtual environment, providing a stimulating and educational cultural experience that can improve the quality and learning purposes of cultural visits. Nonetheless, the analyzed studies revealed some limitations that must be faced to give a further impulse to the adoption of these technologies in the cultural heritage domain
    • …
    corecore