4,186 research outputs found

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I

    A predictive safety filter for learning-based racing control

    Full text link
    The growing need for high-performance controllers in safety-critical applications like autonomous driving has been motivating the development of formal safety verification techniques. In this paper, we design and implement a predictive safety filter that is able to maintain vehicle safety with respect to track boundaries when paired alongside any potentially unsafe control signal, such as those found in learning-based methods. A model predictive control (MPC) framework is used to create a minimally invasive algorithm that certifies whether a desired control input is safe and can be applied to the vehicle, or that provides an alternate input to keep the vehicle in bounds. To this end, we provide a principled procedure to compute a safe and invariant set for nonlinear dynamic bicycle models using efficient convex approximation techniques. To fully support an aggressive racing performance without conservative safety interventions, the safe set is extended in real-time through predictive control backup trajectories. Applications for assisted manual driving and deep imitation learning on a miniature remote-controlled vehicle demonstrate the safety filter's ability to ensure vehicle safety during aggressive maneuvers

    Vehicle-in-the-loop validation of autonomous cars

    Get PDF
    Validation of autonomous driving (AD) cars is a difficult task because of the complexity that results from the integration of multiple systems and the variety of operating conditions. To this end, testing with real vehicles is crucial to ensure a thorough validation of AD cars. However, testing AD vehicles in public roads is not viable in early stages of the development cycle. An alternative is to conduct tests in controlled environments, such as proving grounds.This thesis proposes a framework for modelling, analysis, and control of tests-scenarios for validation of autonomous cars by exposing the vehicle-under-test to a traffic scenario at a test track, where mobile test-targets represent other road users. The framework is suitable for leader-follower, multi-agent systems where the motion of the followers should be coordinated with the motion of an externally controlled leader. Scenarios are modelled as switched systems. The feasibility of the scenario is investigated using backward reachability analysis. A constrained optimal control problem is formulated to control the state of the multi-agent system through a sequence of goal sets. Simulation results illustrate the usefulness of the framework.A second contribution in this thesis is a novel method for decentralized computation of backward reachable sets and robust control invariant sets. The method is applicable to large-scale systems arising from the interconnection of multiple subsystems with linear dynamics. Polyhedral constraints and additive disturbances are considered. Compared to the standard centralized procedure for computation of control invariant sets, the proposed method is more efficient for large-scale systems where the coupling among the subsystems is sparse

    Automotive Threat Assessment Design for Combined Braking and Steering Maneuvers

    Get PDF
    The active safety systems available on the passenger cars market today, automatically deploy automated safety interventions in situations where the driver is in need of assistance. In this paper, we consider the process of determining whether such interventions are needed. In particular, we design a threat assessment method which evaluates the risk that the vehicle will either leave the road or its maneuverability will be significantly reduced within a finite time horizon. The proposed threat assessment method accounts for combined braking and steering maneuvers, which results in a nonlinear dynamical vehicle behavior. We formulate the threat assessment problem as a nonconvex constraint satisfaction problem and implement an algorithm that solves it through interval-based consistency techniques. Experimental validation of the proposed approach indicates that constraint violation can be predicted, while avoiding the detection of false threats

    Efficient Automated Driving Strategies Leveraging Anticipation and Optimal Control

    Get PDF
    Automated vehicles and advanced driver assistance systems bring computation, sensing, and communication technologies that exceed human abilities in some ways. For example, automated vehicles may sense a panorama all at once, do not suffer from human impairments and distractions, and could wirelessly communicate precise data with neighboring vehicles. Prototype and commercial deployments have demonstrated the capability to relieve human operators of some driving tasks up to and including fully autonomous taxi rides in some areas. The ultimate impact of this technology’s large-scale market penetration on energy efficiency remains unclear, with potential negative factors like road use by empty vehicles competing with positive ones like automatic eco-driving. Fundamentally enabled by historic and look-ahead data, this dissertation addresses the use of automated driving and driver assistance to optimize vehicle motion for energy efficiency. Facets of this problem include car following, co-optimized acceleration and lane change planning, and collaborative multi-agent guidance. Optimal control, especially model predictive control, is used extensively to improve energy efficiency while maintaining safe and timely driving via constraints. Techniques including chance constraints and mixed integer programming help overcome uncertainty and non-convexity challenges. Extensions of these techniques to tractor trailers on sloping roads are provided by making use of linear parameter-varying models. To approach the wheel-input energy eco-driving problem over generally shaped sloping roads with the computational potential for closed-loop implementation, a linear programming formulation is constructed. Distributed and collaborative techniques that enable connected and automated vehicles to accommodate their neighbors in traffic are also explored and compared to centralized control. Using simulations and vehicle-in-the-loop car following experiments, the proposed algorithms are benchmarked against others that do not make use of look-ahead information

    Control Barrier Function Based Quadratic Programs for Safety Critical Systems

    Get PDF
    Safety critical systems involve the tight coupling between potentially conflicting control objectives and safety constraints. As a means of creating a formal framework for controlling systems of this form, and with a view toward automotive applications, this paper develops a methodology that allows safety conditions -- expressed as control barrier functions -- to be unified with performance objectives -- expressed as control Lyapunov functions -- in the context of real-time optimization-based controllers. Safety conditions are specified in terms of forward invariance of a set, and are verified via two novel generalizations of barrier functions; in each case, the existence of a barrier function satisfying Lyapunov-like conditions implies forward invariance of the set, and the relationship between these two classes of barrier functions is characterized. In addition, each of these formulations yields a notion of control barrier function (CBF), providing inequality constraints in the control input that, when satisfied, again imply forward invariance of the set. Through these constructions, CBFs can naturally be unified with control Lyapunov functions (CLFs) in the context of a quadratic program (QP); this allows for the achievement of control objectives (represented by CLFs) subject to conditions on the admissible states of the system (represented by CBFs). The mediation of safety and performance through a QP is demonstrated on adaptive cruise control and lane keeping, two automotive control problems that present both safety and performance considerations coupled with actuator bounds
    corecore