211 research outputs found

    Optimal Transport Filtering with Particle Reweighing in Finance

    Full text link
    We show the application of an optimal transportation approach to estimate stochastic volatility process by using the flow that optimally transports the set of particles from the prior to a posterior distribution. We also show how to direct the flow to a rarely visited areas of the state space by using a particle method (a mutation and a reweighing mechanism). We demonstrate the efficiency of our approach on a simple example of the European option price under the Stein-Stein stochastic volatility model for which a closed form formula is available. Both homotopy and reweighted homotopy methods show a lower variance, root-mean squared errors and a bias compared to other filtering schemes recently developed in the signal-processing literature, including particle filter techniques

    An efficient, approximate path-following algorithm for elastic net based nonlinear spike enhancement

    Get PDF
    Unwanted spike noise in a digital signal is a common problem in digital filtering. However, sometimes the spikes are wanted and other, superimposed, signals are unwanted, and linear, time invariant (LTI) filtering is ineffective because the spikes are wideband - overlapping with independent noise in the frequency domain. So, no LTI filter can separate them, necessitating nonlinear filtering. However, there are applications in which the noise includes drift or smooth signals for which LTI filters are ideal. We describe a nonlinear filter formulated as the solution to an elastic net regularization problem, which attenuates band-limited signals and independent noise, while enhancing superimposed spikes. Making use of known analytic solutions a novel, approximate path-following algorithm is given that provides a good, filtered output with reduced computational effort by comparison to standard convex optimization methods. Accurate performance is shown on real, noisy electrophysiological recordings of neural spikes
    corecore