168,399 research outputs found

    Early Childhood Environmental Education in Tropical and Coastal Areas: A Meta-Analysis

    Get PDF
    Early childhood years are the period of the greatest and most significant developments in ones’ life, and are generally regarded as the basis upon which the rest of their life is constructed. However, these early years are those that traditionally have received the least attention from environmental education. This paper was aimed to summarize several dayto-day activities that can be conducted to educate children in their early years about environment. Environmental education is an educational process that deals with the human interrelationships with the environment, and that uses an interdisciplinary problem solving approach with value clarification. Environmental education is aimed at producing a community that is knowledgeable about the biophysical environment and its associated problems, aware of how to solve these problems, and enthusiastic to work toward their solution. It highlights the progress of knowledge, understanding, attitudes, skills, and commitment for environmental problems and considerations. Further, environmental education can help children expand their ecological worldview, promote active care to the environment, and explain the relationship between modern life style and current environmental problems. Several types of environmental education have been identified from the literature, such as outdoor activities in natural outdoor setting, school gardening, play-based learning, and drawing activities. Each of these activities has its own characteristics and effects on children’s environmental-related attitudes and behaviors. Through these activities, the unique characteristics of tropical and coastal areas can potentially be used to facilitate children to learn about nature and environment. Recommendations for childhood education practitioners and future researchers are discussed

    BIMing the architectural curricula: integrating Building Information Modelling (BIM) in architectural education

    Get PDF
    Building Information Modelling (BIM) reflects the current heightened transformation within the Architectural, Engineering and Construction (AEC) Industry and the Facilities and Management (FM) sector, offering a host of benefits from increased efficiency, accuracy, speed, co-ordination, consistency, energy analysis, project cost reduction etc to various stake holders from owners to architects, engineers, contractors and other built environment professionals. Many countries around the world are responding to this paradigm shift including the United Kingdom (UK). The Cabinet office took the decision in 2011 to make the use of collaborative 3D BIM technology mandatory for all public sector construction contracts by 2016 (Cabinet Office, 2011). According to Smith and Tardif, despite certain myths and misconceptions surrounding BIM, its rate of implementation has been much faster in comparison to the availability of professionals skilled in use of BIM, thus creating a skill gap in the design and construction industry (Smith and Tardif, cited in Barison and Santos, 2010a). This article aims at bridging the gap between the graduate skill sets and the changing needs of the profession. The research methodology adopted consists of thoroughly reviewing the existing literature in this subject area coupled with carrying out a survey of accredited Schools of Architecture in the UK. The analysis of the survey questionnaire results shows the extent to which BIM is currently being taught and identifies the barriers where its implementation has either been slow or not yet started. The paper highlights the fact that there has been considerable delay in the successful integration of BIM in the Schools of Architecture in the UK, thus emphasising the need for expeditiously training and preparing students in the use of BIM making them ready to effectively perform in a BIM enabled work arena

    Design Gateway: Pedagogical Discussion of a Second-Year Industrial Design Studio

    Get PDF
    This presentation was part of the session : Pedagogy: Procedures, Scaffolds, Strategies, Tactics24th National Conference on the Beginning Design StudentMost industrial design programs focus the beginning design curriculum on the learning of core design principles. These core principles are seen as not specific to any one discipline (architecture, industrial design, interior design, etc.), but rather as fundamentals germane to all design fields. These core principles focus on the analysis of built artifact (structures, products, systems) to develop an understanding of geometry, structure and composition through looking and exploring. Students develop skills in representing, communicating and analyzing what they see and experience. These skills are nurtured in early studios. As students move into later studios, more discipline-specific knowledge and skills are integrated into their educational pedagogy. In the beginning years of design education, there is a transition from the learning of general 'core' design fundamentals to specialized principles that is inherent to their specific disciplines. As students move from abstract ideas to 'real-world' projects, they seem to have difficulty transitioning between the abstract concepts they previously learned and reality that requires application to new settings [1]. Students perceive learned concepts as specific to a particular studio project, rather than realize that design education is a continuum of practiced principles [1]. This presents a disconnect between knowledge transfer from one studio project to the next. The curriculum of the second-year industrial design studio at the Georgia Institute of Technology is designed to address this disconnect and help students successfully transition from the core design fundamentals to industrial design knowledge. Throughout the second year education, students engage in the making and communication of form and they do it through design exercises dealing with the fundamentals as well as knowledge base, both simultaneously and repeatedly, According to ----, a design education that offers a component of repetitive experience encourages students to be cognizant of the iterative nature of both the design process as well as design education [2]. This paper discusses the approach, designed by the authors, evident in the sophomore-year industrial design curriculum at Georgia Tech. While emphasis is placed on rigor, exploration and articulation of concepts throughout the studio period, this approach adopts a pedagogy based on a series of modules that scaffold the introduction of new concepts with the reinforcement of previously learned ones. Individual modules follow a path of concept introduction (lecture), analysis, practice, and finally refinement. Upon completion of several modules, students engage in a 'module project' which demonstrates synthesis and realization of the learned concepts. A final semester-end design project provides for aggregation and demonstration of all subject matter learned throughout the semester. This pedagogical approach bridges the gap of disconnect between previous studios and promotes a continuous layering and practice of beginning design fundamentals

    Explicit comprehension instruction : a review of research and a new conceptualization of instruction

    Get PDF
    Includes bibliographical references (p. 13-16)The work upon which this publication was based was supported in part by the Office of Educational Research and Improvement under cooperative agreement no. OEG 0087-C100

    Leveraging a Relationship with Biology to Expand a Relationship with Physics

    Full text link
    This work examines how experiences in one disciplinary domain (biology) can impact the relationship a student builds with another domain (physics). We present a model for disciplinary relationships using the constructs of identity, affect, and epistemology. With these constructs we examine an ethnographic case study of a student who experienced a significant shift in her relationship with physics. We describe how this shift demonstrates (1) a stronger identification with physics, (2) a more mixed affective stance towards physics, and (3) more expert-like ways of knowing in physics. We argue that recruiting the students relationship with biology into experiences of learning physics impacted her relationship with physics as well as her sense of how physics and biology are linked
    • …
    corecore