546 research outputs found

    An Algorithmic Framework for Labeling Network Maps

    Full text link
    Drawing network maps automatically comprises two challenging steps, namely laying out the map and placing non-overlapping labels. In this paper we tackle the problem of labeling an already existing network map considering the application of metro maps. We present a flexible and versatile labeling model. Despite its simplicity, we prove that it is NP-complete to label a single line of the network. For a restricted variant of that model, we then introduce an efficient algorithm that optimally labels a single line with respect to a given weighting function. Based on that algorithm, we present a general and sophisticated workflow for multiple metro lines, which is experimentally evaluated on real-world metro maps.Comment: Full version of COCOON 2015 pape

    Snapping Graph Drawings to the Grid Optimally

    Full text link
    In geographic information systems and in the production of digital maps for small devices with restricted computational resources one often wants to round coordinates to a rougher grid. This removes unnecessary detail and reduces space consumption as well as computation time. This process is called snapping to the grid and has been investigated thoroughly from a computational-geometry perspective. In this paper we investigate the same problem for given drawings of planar graphs under the restriction that their combinatorial embedding must be kept and edges are drawn straight-line. We show that the problem is NP-hard for several objectives and provide an integer linear programming formulation. Given a plane graph G and a positive integer w, our ILP can also be used to draw G straight-line on a grid of width w and minimum height (if possible).Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    MetroSets: Visualizing Sets as Metro Maps

    Full text link
    We propose MetroSets, a new, flexible online tool for visualizing set systems using the metro map metaphor. We model a given set system as a hypergraph H=(V,S)\mathcal{H} = (V, \mathcal{S}), consisting of a set VV of vertices and a set S\mathcal{S}, which contains subsets of VV called hyperedges. Our system then computes a metro map representation of H\mathcal{H}, where each hyperedge EE in S\mathcal{S} corresponds to a metro line and each vertex corresponds to a metro station. Vertices that appear in two or more hyperedges are drawn as interchanges in the metro map, connecting the different sets. MetroSets is based on a modular 4-step pipeline which constructs and optimizes a path-based hypergraph support, which is then drawn and schematized using metro map layout algorithms. We propose and implement multiple algorithms for each step of the MetroSet pipeline and provide a functional prototype with \new{easy-to-use preset configurations.} % many real-world datasets. Furthermore, \new{using several real-world datasets}, we perform an extensive quantitative evaluation of the impact of different pipeline stages on desirable properties of the generated maps, such as octolinearity, monotonicity, and edge uniformity.Comment: 19 pages; accepted for IEEE INFOVIS 2020; for associated live system, see http://metrosets.ac.tuwien.ac.a

    Drawing metro maps in concentric circles: A designer‐in‐the‐loop approach with visual examples

    Get PDF
    This article presents a proof-of-concept designer-in-the-loop schematic map drawing tool, based on the marriage of two approaches—manual and automated, which provides the technical interactivity of drawing tools between the user and the computer. We focus on concentric circle maps as opposed to the commonly used orthogonal mode representation, which is suggested by previous studies that it could promote better network learning. In comparison with existing methods, the proposed method is more compatible with the framework of effective map design from psychological and aesthetic perspectives, and a range of options can be provided in conjunction with users' preferences. We evaluated our approach on a set of iterations with case studies of Hong Kong metro with a group of three co-authors from the fields of geography, transport engineering, and education

    Automated drawing of metro maps

    Get PDF
    This work investigates the problem of drawing metro maps which is defined as follows. Given a planar graph G of maximum degree 8 with its embedding and vertex locations (e.g. the physical location of the tracks and stations of a metro system) and a set L of paths or cycles in G (e.g. metro lines) such that each edge of G belongs to at least one element of L, draw G and L nicely. We first specify the niceness of a drawing by listing a number of hard and soft constraints. Then we show that it is NP-complete to decide whether a drawing of G satisfying all hard constraints exists. In spite of the hardness of the problem we present a mixed-integer linear program (MIP) which always finds a drawing that fulfills all hard constraints (if such a drawing exists) and optimizes a weighted sum of costs corresponding to the soft constraints. We also describe some heuristics that speed up the MIP and we show how to include vertex labels in the drawing. We have implemented the MIP, the heuristics and the vertex labeling. For six real-world examples we compare our results to official metro maps drawn by graphic designers and to the results of previous algorithms for drawing metro maps

    Planar Octilinear Drawings with One Bend Per Edge

    Get PDF
    In octilinear drawings of planar graphs, every edge is drawn as an alternating sequence of horizontal, vertical and diagonal (45∘45^\circ) line-segments. In this paper, we study octilinear drawings of low edge complexity, i.e., with few bends per edge. A kk-planar graph is a planar graph in which each vertex has degree less or equal to kk. In particular, we prove that every 4-planar graph admits a planar octilinear drawing with at most one bend per edge on an integer grid of size O(n2)×O(n)O(n^2) \times O(n). For 5-planar graphs, we prove that one bend per edge still suffices in order to construct planar octilinear drawings, but in super-polynomial area. However, for 6-planar graphs we give a class of graphs whose planar octilinear drawings require at least two bends per edge

    What?s your theory of effective schematic map design?

    Get PDF
    Amongst designers, researchers, and the general public, there exists a diverse array of opinion about good practice in schematic map design, and a lack of awareness that such opinions are not necessarily universally held nor supported by evidence. This paper gives an overview of the range of opinion that can be encountered, the consequences that this has for published designs, and a framework for organising the various views

    Network Visualization: Algorithms, Applications, and Complexity

    Get PDF
    • 

    corecore