429 research outputs found

    On Upward Drawings of Trees on a Given Grid

    Full text link
    Computing a minimum-area planar straight-line drawing of a graph is known to be NP-hard for planar graphs, even when restricted to outerplanar graphs. However, the complexity question is open for trees. Only a few hardness results are known for straight-line drawings of trees under various restrictions such as edge length or slope constraints. On the other hand, there exist polynomial-time algorithms for computing minimum-width (resp., minimum-height) upward drawings of trees, where the height (resp., width) is unbounded. In this paper we take a major step in understanding the complexity of the area minimization problem for strictly-upward drawings of trees, which is one of the most common styles for drawing rooted trees. We prove that given a rooted tree TT and a W×HW\times H grid, it is NP-hard to decide whether TT admits a strictly-upward (unordered) drawing in the given grid.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    The monadic second-order logic of graphs I. Recognizable sets of Finite Graphs

    Get PDF
    The notion of a recognizable sef offinite graphs is introduced. Every set of finite graphs, that is definable in monadic second-order logic is recognizable, but not vice versa. The monadic second-order theory of a context-free set of graphs is decidable. 0 19W Academic Press. Inc. This paper begins an investigation of the monadic second-order logic of graphs and of sets of graphs, using techniques from universal algebra, and the theory of formal languages. (By a graph, we mean a finite directed hyperedge-labelled hypergraph, equipped with a sequence of distinguished vertices.) A survey of this research can be found in Courcelle [ 111. An algebraic structure on the set of graphs (in the above sense) has been proposed by Bauderon and Courcelle [2,7]. The notion of a recognizable set of finite graphs follows, as an instance of the general notion of recognizability introduced by Mezei and Wright in [25]. A graph can also be considered as a logical structure of a certain type. Hence, properties of graphs can be written in first-order logic or in secondorder logic. It turns out that monadic second-order logic, where quantifications over sets of vertices and sets of edges are used, is a reasonably powerful logical language (in which many usual graph properties can be written), for which one can obtain decidability results. These decidability results do not hold for second-order logic, where quantifications over binary relations can also be used. Our main theorem states that every definable set of finite graphs (i.e., every set that is the set of finite graphs satisfying a graph property expressible in monadic second-order logic) is recognizable. * This work has been supported by the “Programme de Recherches Coordonntes: Mathematiques et Informatique.

    Algebraic approach to hardware description and verification

    Get PDF
    • …
    corecore