722 research outputs found

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Moduli of Tropical Plane Curves

    Get PDF
    We study the moduli space of metric graphs that arise from tropical plane curves. There are far fewer such graphs than tropicalizations of classical plane curves. For fixed genus gg, our moduli space is a stacky fan whose cones are indexed by regular unimodular triangulations of Newton polygons with gg interior lattice points. It has dimension 2g+12g+1 unless g≤3g \leq 3 or g=7g = 7. We compute these spaces explicitly for g≤5g \leq 5.Comment: 31 pages, 25 figure

    Liftings and stresses for planar periodic frameworks

    Get PDF
    We formulate and prove a periodic analog of Maxwell's theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks.Comment: An extended abstract of this paper has appeared in Proc. 30th annual Symposium on Computational Geometry (SOCG'14), Kyoto, Japan, June 201

    Inconstancy of finite and infinite sequences

    Get PDF
    In order to study large variations or fluctuations of finite or infinite sequences (time series), we bring to light an 1868 paper of Crofton and the (Cauchy-)Crofton theorem. After surveying occurrences of this result in the literature, we introduce the inconstancy of a sequence and we show why it seems more pertinent than other criteria for measuring its variational complexity. We also compute the inconstancy of classical binary sequences including some automatic sequences and Sturmian sequences.Comment: Accepted by Theoretical Computer Scienc

    Drawing Graphs as Spanners

    Full text link
    We study the problem of embedding graphs in the plane as good geometric spanners. That is, for a graph GG, the goal is to construct a straight-line drawing Γ\Gamma of GG in the plane such that, for any two vertices uu and vv of GG, the ratio between the minimum length of any path from uu to vv and the Euclidean distance between uu and vv is small. The maximum such ratio, over all pairs of vertices of GG, is the spanning ratio of Γ\Gamma. First, we show that deciding whether a graph admits a straight-line drawing with spanning ratio 11, a proper straight-line drawing with spanning ratio 11, and a planar straight-line drawing with spanning ratio 11 are NP-complete, ∃R\exists \mathbb R-complete, and linear-time solvable problems, respectively, where a drawing is proper if no two vertices overlap and no edge overlaps a vertex. Second, we show that moving from spanning ratio 11 to spanning ratio 1+ϵ1+\epsilon allows us to draw every graph. Namely, we prove that, for every ϵ>0\epsilon>0, every (planar) graph admits a proper (resp. planar) straight-line drawing with spanning ratio smaller than 1+ϵ1+\epsilon. Third, our drawings with spanning ratio smaller than 1+ϵ1+\epsilon have large edge-length ratio, that is, the ratio between the length of the longest edge and the length of the shortest edge is exponential. We show that this is sometimes unavoidable. More generally, we identify having bounded toughness as the criterion that distinguishes graphs that admit straight-line drawings with constant spanning ratio and polynomial edge-length ratio from graphs that require exponential edge-length ratio in any straight-line drawing with constant spanning ratio
    • …
    corecore