1,049 research outputs found

    A Tabu Search Based Approach for Graph Layout

    Get PDF
    This paper describes an automated tabu search based method for drawing general graph layouts with straight lines. To our knowledge, this is the first time tabu methods have been applied to graph drawing. We formulated the task as a multi-criteria optimization problem with a number of metrics which are used in a weighted fitness function to measure the aesthetic quality of the graph layout. The main goal of this work is to speed up the graph layout process without sacrificing layout quality. To achieve this, we use a tabu search based method that goes through a predefined number of iterations to minimize the value of the fitness function. Tabu search always chooses the best solution in the neighbourhood. This may lead to cycling, so a tabu list is used to store moves that are not permitted, meaning that the algorithm does not choose previous solutions for a set period of time. We evaluate the method according to the time spent to draw a graph and the quality of the drawn graphs. We give experimental results applied on random graphs and we provide statistical evidence that our method outperforms a fast search-based drawing method (hill climbing) in execution time while it produces comparably good graph layouts.We also demonstrate the method on real world graph datasets to show that we can reproduce similar results in a real world setting

    Representing Space: A Hybrid Genetic Algorithm for Aesthetic Graph Layout

    Get PDF
    This paper describes a hybrid Genetic Algorithm (GA) that is used to improve the layout of a graph according to a number of aesthetic criteria. The GA incorporates spatial and topological information by operating directly with a graph based representation. Initial results show this to be a promising technique for positioning graph nodes on a surface and may form the basis of a more general approach for problems involving multi-criteria spatial optimisation

    Layout of Graphs with Bounded Tree-Width

    Full text link
    A \emph{queue layout} of a graph consists of a total order of the vertices, and a partition of the edges into \emph{queues}, such that no two edges in the same queue are nested. The minimum number of queues in a queue layout of a graph is its \emph{queue-number}. A \emph{three-dimensional (straight-line grid) drawing} of a graph represents the vertices by points in Z3\mathbb{Z}^3 and the edges by non-crossing line-segments. This paper contributes three main results: (1) It is proved that the minimum volume of a certain type of three-dimensional drawing of a graph GG is closely related to the queue-number of GG. In particular, if GG is an nn-vertex member of a proper minor-closed family of graphs (such as a planar graph), then GG has a O(1)Ă—O(1)Ă—O(n)O(1)\times O(1)\times O(n) drawing if and only if GG has O(1) queue-number. (2) It is proved that queue-number is bounded by tree-width, thus resolving an open problem due to Ganley and Heath (2001), and disproving a conjecture of Pemmaraju (1992). This result provides renewed hope for the positive resolution of a number of open problems in the theory of queue layouts. (3) It is proved that graphs of bounded tree-width have three-dimensional drawings with O(n) volume. This is the most general family of graphs known to admit three-dimensional drawings with O(n) volume. The proofs depend upon our results regarding \emph{track layouts} and \emph{tree-partitions} of graphs, which may be of independent interest.Comment: This is a revised version of a journal paper submitted in October 2002. This paper incorporates the following conference papers: (1) Dujmovic', Morin & Wood. Path-width and three-dimensional straight-line grid drawings of graphs (GD'02), LNCS 2528:42-53, Springer, 2002. (2) Wood. Queue layouts, tree-width, and three-dimensional graph drawing (FSTTCS'02), LNCS 2556:348--359, Springer, 2002. (3) Dujmovic' & Wood. Tree-partitions of kk-trees with applications in graph layout (WG '03), LNCS 2880:205-217, 200

    Drawing Free Trees Inside Simple Polygons Using Polygon Skeleton

    Get PDF
    Most of graph drawing algorithms draw graphs on unbounded planes. In this paper we introduce a new polyline grid drawing algorithm for drawing free trees on plane regions which are bounded by simple polygons. Our algorithm uses the simulated annealing (SA) method, and by means of the straight skeletons of the bounding polygons guides the SA method to uniformly distribute the vertices of the given trees over the given regions. Our results show improvements to the previous algorithms that use the SA method to draw graphs inside rectangles. To our knowledge, this paper is the first attempt for developing algorithms that draw graphs on regions which are bounded by simple polygons

    Dynamic Euler Diagram Drawing

    Get PDF
    In this paper we describe a method to lay out a graph enhanced Euler diagram so that it looks similar to a previously drawn graph enhanced Euler diagram. This task is non-trivial when the underlying structures of the diagrams differ. In particular, if a structural change is made to an existing drawn diagram, our work enables the presentation of the new diagram with minor disruption to the user's mental map. As the new diagram can be generated from an abstract representation, its initial embedding may be very different from that of the original. We have developed comparison measures for Euler diagrams, integrated into a multicriteria optimizer, and applied a force model for associated graphs that attempts to move nodes towards their positions in the original layout. To further enhance the usability of the system, the transition between diagrams can be animated
    • …
    corecore