293 research outputs found

    Drawing Arrangement Graphs In Small Grids, Or How To Play Planarity

    Full text link
    We describe a linear-time algorithm that finds a planar drawing of every graph of a simple line or pseudoline arrangement within a grid of area O(n^{7/6}). No known input causes our algorithm to use area \Omega(n^{1+\epsilon}) for any \epsilon>0; finding such an input would represent significant progress on the famous k-set problem from discrete geometry. Drawing line arrangement graphs is the main task in the Planarity puzzle.Comment: 12 pages, 8 figures. To appear at 21st Int. Symp. Graph Drawing, Bordeaux, 201

    Convex-Arc Drawings of Pseudolines

    Get PDF
    A weak pseudoline arrangement is a topological generalization of a line arrangement, consisting of curves topologically equivalent to lines that cross each other at most once. We consider arrangements that are outerplanar---each crossing is incident to an unbounded face---and simple---each crossing point is the crossing of only two curves. We show that these arrangements can be represented by chords of a circle, by convex polygonal chains with only two bends, or by hyperbolic lines. Simple but non-outerplanar arrangements (non-weak) can be represented by convex polygonal chains or convex smooth curves of linear complexity.Comment: 11 pages, 8 figures. A preliminary announcement of these results was made as a poster at the 21st International Symposium on Graph Drawing, Bordeaux, France, September 2013, and published in Lecture Notes in Computer Science 8242, Springer, 2013, pp. 522--52

    Unit Grid Intersection Graphs: Recognition and Properties

    Full text link
    It has been known since 1991 that the problem of recognizing grid intersection graphs is NP-complete. Here we use a modified argument of the above result to show that even if we restrict to the class of unit grid intersection graphs (UGIGs), the recognition remains hard, as well as for all graph classes contained inbetween. The result holds even when considering only graphs with arbitrarily large girth. Furthermore, we ask the question of representing UGIGs on grids of minimal size. We show that the UGIGs that can be represented in a square of side length 1+epsilon, for a positive epsilon no greater than 1, are exactly the orthogonal ray graphs, and that there exist families of trees that need an arbitrarily large grid

    Convex-Arc Drawings of Pseudolines ⋆

    Get PDF
    Introduction. A pseudoline is formed from a line by stretching the plane without tearing: it is the image of a line under a homeomorphism of the plane [13]. In arrangements of pseudolines, pairs of pseudolines intersect at most once and cross at their intersections. Pseudoline arrangements can be used to model sorting networks [1], tilings of convex polygons by rhombi [4], and graphs that have distance-preserving embedding

    Fixed parameter tractability of crossing minimization of almost-trees

    Full text link
    We investigate exact crossing minimization for graphs that differ from trees by a small number of additional edges, for several variants of the crossing minimization problem. In particular, we provide fixed parameter tractable algorithms for the 1-page book crossing number, the 2-page book crossing number, and the minimum number of crossed edges in 1-page and 2-page book drawings.Comment: Graph Drawing 201

    The Complexity of Drawing Graphs on Few Lines and Few Planes

    Full text link
    It is well known that any graph admits a crossing-free straight-line drawing in R3\mathbb{R}^3 and that any planar graph admits the same even in R2\mathbb{R}^2. For a graph GG and d{2,3}d \in \{2,3\}, let ρd1(G)\rho^1_d(G) denote the minimum number of lines in Rd\mathbb{R}^d that together can cover all edges of a drawing of GG. For d=2d=2, GG must be planar. We investigate the complexity of computing these parameters and obtain the following hardness and algorithmic results. - For d{2,3}d\in\{2,3\}, we prove that deciding whether ρd1(G)k\rho^1_d(G)\le k for a given graph GG and integer kk is R{\exists\mathbb{R}}-complete. - Since NPR\mathrm{NP}\subseteq{\exists\mathbb{R}}, deciding ρd1(G)k\rho^1_d(G)\le k is NP-hard for d{2,3}d\in\{2,3\}. On the positive side, we show that the problem is fixed-parameter tractable with respect to kk. - Since RPSPACE{\exists\mathbb{R}}\subseteq\mathrm{PSPACE}, both ρ21(G)\rho^1_2(G) and ρ31(G)\rho^1_3(G) are computable in polynomial space. On the negative side, we show that drawings that are optimal with respect to ρ21\rho^1_2 or ρ31\rho^1_3 sometimes require irrational coordinates. - Let ρ32(G)\rho^2_3(G) be the minimum number of planes in R3\mathbb{R}^3 needed to cover a straight-line drawing of a graph GG. We prove that deciding whether ρ32(G)k\rho^2_3(G)\le k is NP-hard for any fixed k2k \ge 2. Hence, the problem is not fixed-parameter tractable with respect to kk unless P=NP\mathrm{P}=\mathrm{NP}

    Small Superpatterns for Dominance Drawing

    Full text link
    We exploit the connection between dominance drawings of directed acyclic graphs and permutations, in both directions, to provide improved bounds on the size of universal point sets for certain types of dominance drawing and on superpatterns for certain natural classes of permutations. In particular we show that there exist universal point sets for dominance drawings of the Hasse diagrams of width-two partial orders of size O(n^{3/2}), universal point sets for dominance drawings of st-outerplanar graphs of size O(n\log n), and universal point sets for dominance drawings of directed trees of size O(n^2). We show that 321-avoiding permutations have superpatterns of size O(n^{3/2}), riffle permutations (321-, 2143-, and 2413-avoiding permutations) have superpatterns of size O(n), and the concatenations of sequences of riffles and their inverses have superpatterns of size O(n\log n). Our analysis includes a calculation of the leading constants in these bounds.Comment: ANALCO 2014, This version fixes an error in the leading constant of the 321-superpattern siz

    Superpatterns and Universal Point Sets

    Full text link
    An old open problem in graph drawing asks for the size of a universal point set, a set of points that can be used as vertices for straight-line drawings of all n-vertex planar graphs. We connect this problem to the theory of permutation patterns, where another open problem concerns the size of superpatterns, permutations that contain all patterns of a given size. We generalize superpatterns to classes of permutations determined by forbidden patterns, and we construct superpatterns of size n^2/4 + Theta(n) for the 213-avoiding permutations, half the size of known superpatterns for unconstrained permutations. We use our superpatterns to construct universal point sets of size n^2/4 - Theta(n), smaller than the previous bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding permutations has superpatterns of size O(n log^O(1) n), which we use to prove that the planar graphs of bounded pathwidth have near-linear universal point sets.Comment: GD 2013 special issue of JGA
    corecore