103,896 research outputs found

    Geomorphic analyses from space imagery

    Get PDF
    One of the most obvious applications of space imagery to geomorphological analyses is in the study of drainage patterns and channel networks. LANDSAT, high altitude photography and other types of remote sensing imagery are excellent for depicting stream networks on a regional scale because of their broad coverage in a single image. They offer a valuable tool for comparing and analyzing drainage patterns and channel networks all over the world. Three aspects considered in this geomorphological study are: (1) the origin, evolution and rates of development of drainage systems; (2) the topological studies of network and channel arrangements; and (3) the adjustment of streams to tectonic events and geologic structure (i.e., the mode and rate of adjustment)

    Unified View of Scaling Laws for River Networks

    Full text link
    Scaling laws that describe the structure of river networks are shown to follow from three simple assumptions. These assumptions are: (1) river networks are structurally self-similar, (2) single channels are self-affine, and (3) overland flow into channels occurs over a characteristic distance (drainage density is uniform). We obtain a complete set of scaling relations connecting the exponents of these scaling laws and find that only two of these exponents are independent. We further demonstrate that the two predominant descriptions of network structure (Tokunaga's law and Horton's laws) are equivalent in the case of landscapes with uniform drainage density. The results are tested with data from both real landscapes and a special class of random networks.Comment: 14 pages, 9 figures, 4 tables (converted to Revtex4, PRE ref added

    Simulating the effects of spatial configurations of agricultural ditch drainage networks on surface runoff from agricultural catchments

    Get PDF
    The study of runoff is a crucial issue because it is closely related to flooding, water quality and erosion. In cultivated catchments, agricultural ditch drainage networks are known to influence runoff. As anthropogenic elements, agricultural ditch drainage networks can therefore be altered to better manage surface runoff in cultivated catchments. However, the relationship between the spatial configuration, i.e., the density and the topology, of agricultural ditch drainage networks and surface runoff in cultivated catchments is not understood. We studied this relationship by using a random network simulator that was coupled to a distributed hydrological model. The simulations explored a large variety of spatial configurations corresponding to a thousand stochastic agricultural ditch drainage networks on a 6.4 km2 Mediterranean cultivated catchment. Next, several distributed hydrological functions were used to compute water flow-paths and runoff for each simulation. The results showed that (i) denser networks increased the drained volume and the peak discharge and decreased hillslopes runoff, (ii) greater network density did not affect the surface runoff any further above a given network density, (iii) the correlation between network density and runoff was weaker for small subcatchments (< 2 km2) where the variability in the drained area that resulted from changes in agricultural ditch drainage networks increased the variability of runoff and (iv) the actual agricultural ditch drainage network appeared to be well optimized for managing runoff as compared with the simulated networks. Finally, our results highlighted the role of agricultural ditch drainage networks in intercepting and decreasing overland flow on hillslopes and increasing runoff in drainage networks

    A minimalist model for coevolving supply and drainage networks

    Get PDF
    Numerous complex systems, both natural and artificial, are characterized by the presence of intertwined supply and/or drainage networks. Here, we present a minimalist model of such coevolving networks in a spatially continuous domain, where the obtained networks can be interpreted as a part of either the counter-flowing drainage or co-flowing supply and drainage mechanisms. The model consists of three coupled, nonlinear partial differential equations that describe spatial density patterns of input and output materials by modifying a mediating scalar field, on which supply and drainage networks are carved. In the two-dimensional case, the scalar field can be viewed as the elevation of a hypothetical landscape, of which supply and drainage networks are ridges and valleys, respectively. In the three-dimensional case, the scalar field serves the role of a chemical signal, according to which vascularization of the supply and drainage networks occurs above a critical ‘erosion’ strength. The steady-state solutions are presented as a function of non-dimensional channelization indices for both materials. The spatial patterns of the emerging networks are classified within the branched and congested extreme regimes, within which the resulting networks are characterized based on the absolute as well as the relative values of two non-dimensional indices.publishedVersio

    Constructal view of scaling laws of river basins

    Get PDF
    River basins are examples of naturally organized flow architectures whose scaling properties have been noticed long ago. Based on data of geometric characteristics, Horton [Horton, R.E., 1932. Drainage basin characteristics. EOS Trans. AGU 13, 350–361.], Hack [Hack, J.T., 1957. Studies of longitudinal profiles in Virginia and Maryland. USGS Professional Papers 294-B, Washington DC, pp. 46–97.], and Melton [Melton, M.A, 1958. Correlation structure of morphometric properties of drainage systems and their controlling agents. J. of Geology 66, 35–56.] proposed scaling laws that are considered to describe rather accurately the actual river basins. What we show here is that these scaling laws can be anticipated based on Constructal Theory, which views the pathways by which drainage networks develop in a basin not as the result of chance but as flow architectures that originate naturally as the result of minimization of the overall resistance to flow (Constructal Law)

    Valley development on Hawaiian volcanoes

    Get PDF
    Work in progress on Hawaiian drainage evolution indicates an important potential for understanding drainage development on Mars. Similar to Mars, the Hawaiian valleys were initiated by surface runoff, subsequently enlarged by groundwater sapping, and eventually stabilized as aquifers were depleted. Quantitative geomorphic measurements were used to evaluate the following factors in Hawaiian drainage evolution: climate, stream processes, and time. In comparing regions of similar climate, drainage density shows a general increase with the age of the volcani island. With age and climate held constant, sapping dominated valleys, in contrast to runoff-dominated valleys, display the following: lower drainage densities, higher ratios of valley floor width to valley height, and more positive profile concavities. Studies of stream junction angles indicate increasing junction angles with time on the drier leeward sides of the major islands. The quantitative geomorphic studies and earlier field work yielded important insights for Martian geomorphology. The importance of ash mantling in controlling infiltration on Hawaii also seems to apply to Mars. The Hawaiian valley also have implications for the valley networks of Martian heavily cratered terrains

    Conceptual quality modelling and integrated control of combined urban drainage system

    Get PDF
    This paper presents the first results of conceptual quality modelling approach oriented to the integrated real-time control (RTC) strategy for urban drainage networks (UDN) and wastewater treatment plants (WWTP) developed in the European project LIFE EFFIDRAIN (Efficient Integrated Real-time Control in Urban Drainage and Wastewater Treatment Plants for Environmental Protection). Model predictive control (MPC) has been selected as a proper RTC to minimize the polluting discharge in case of raining events. The simulator SWMM5 was modified to integrate a lumped conceptual model for total suspended solids (TSS) called SWMM-TSS, which has been used as virtual reality for calibration and validation of the proposed modelling approaches in Perinot network, a real case study in Bordeaux.Peer ReviewedPostprint (author's final draft
    • …
    corecore