94,185 research outputs found

    Doxorubicin Selectively Inhibits Brain versus Atrial Natriuretic Peptide Gene Expression in Cultured Neonatal Rat Myocytes

    Get PDF
    Doxorubicin is an antineoplastic agent with significant cardiotoxicity. We examined the effects of this agent on the expression of the natriuretic peptide (NP) genes in cultured neonatal rat atrial myocytes. Doxorubicin suppressed NP secretion, steady-state NP mRNA levels, and NP gene promoter activity. In each instance, brain NP (BNP) proved to be more sensitive than atrial NP (ANP) to the inhibitory effects of the drug. ICRF-187 and probucol reversed the inhibition by doxorubicin of ANP mRNA accumulation and ANP gene promoter activity while exerting no effect on BNP mRNA levels or promoter activity. This represents the first identification of the NP genes as targets of doxorubicin toxicity in the myocardial cell. This inhibition operates predominantly at a transcriptional locus and has more potent effects on BNP versus ANP secretion/gene expression. Measurement of BNP secretion/gene expression may provide a sensitive marker of early doxorubicin cardiotoxicity

    Fasting Reduces the Incidence of Delayed-Type Vomiting Associated with Doxorubicin Treatment in Dogs with Lymphoma.

    Get PDF
    Fasting reduces gastrointestinal cellular proliferation rates through G1 cycle blockade and can promote cellular protection of normal but not cancer cells through altered cell signaling including down-regulation of insulin-like growth factor 1 (IGF-1). Consequently, the purpose of this study was to determine the effects of fasting on delayed-type chemotherapy-induced nausea and vomiting in dogs receiving doxorubicin. This prospective randomized crossover study involved intended administration of two doses of doxorubicin. Cancer-bearing dogs were randomized to be fasted for 24 hours beginning at 6 P.M. the night before the first or second doxorubicin administration, and all treatments were administered within an hour before or after 12 P.M. Dogs were fed normally before the alternate dose. Circulating IGF-1 concentrations were determined from serum samples obtained immediately before each doxorubicin treatment. Data from 35 doses were available from 20 dogs enrolled. Dogs that were fasted exhibited a significantly lower incidence of vomiting, when compared to fed dogs (10% compared to 67%, P = .020). Furthermore, among the 15 dogs that completed crossover dosing, vomiting was abrogated in four of five dogs that experienced doxorubicin-induced vomiting when fed normally (P = .050). No differences in other gastrointestinal, constitutional, or bone marrow toxicities or serum IGF-1 levels were observed

    A mathematical model of Doxorubicin treatment efficacy on non-Hodgkin’s lymphoma: Investigation of current protocol through theoretical modelling results

    Get PDF
    Doxorubicin treatment outcomes for non-Hodgkin’s lymphomas (NHL) are mathematically modelled and computationally analyzed. The NHL model includes a tumor structure incorporating mature and immature vessels, vascular structural adaptation and NHL cell-cycle kinetics in addition to Doxorubicin pharmacokinetics (PK) and pharmacodynamics (PD). Simulations provide qualitative estimations of the effect of Doxorubicin on high-grade (HG), intermediate-grade (IG) and low-grade (LG) NHL. Simulation results imply that if the interval between successive drug applications is prolonged beyond a certain point, treatment will be inefficient due to effects caused by heterogeneous blood flow in the system

    Modulation of STAT3 signaling, cell redox defenses and cell cycle checkpoints by β-caryophyllene in cholangiocarcinoma cells: possible mechanisms accounting for doxorubicin chemosensitization and chemoprevention

    Get PDF
    Cholangiocarcinoma (CCA) is an aggressive group of biliary tract cancers, characterized by late diagnosis, low effective chemotherapies, multidrug resistance, and poor outcomes. In the attempt to identify new therapeutic strategies for CCA, we studied the antiproliferative activity of a combination between doxorubicin and the natural sesquiterpene β-caryophyllene in cholangiocarcinoma Mz-ChA-1 cells and nonmalignant H69 cholangiocytes, under both long-term and metronomic schedules. The modulation of STAT3 signaling, oxidative stress, DNA damage response, cell cycle progression and apoptosis was investigated as possible mechanisms of action. β-caryophyllene was able to synergize the cytotoxicity of low dose doxorubicin in Mz-ChA-1 cells, while producing cytoprotective effects in H69 cholangiocytes, mainly after a long-term exposure of 24 h. The mechanistic analysis highlighted that the sesquiterpene induced a cell cycle arrest in G2/M phase along with the doxorubicin-induced accumulation in S phase, reduced the γH2AX and GSH levels without affecting GSSG. ROS amount was partly lowered by the combination in Mz-ChA-1 cells, while increased in H69 cells. A lowered expression of doxorubicin-induced STAT3 activation was found in the presence of β-caryophyllene in both cancer and normal cholangiocytes. These networking effects resulted in an increased apoptosis rate in Mz-ChA-1 cells, despite a lowering in H69 cholangiocytes. This evidence highlighted a possible role of STAT3 as a final effector of a complex network regulated by β-caryophyllene, which leads to an enhanced doxorubicin-sensitivity of cholangiocarcinoma cells and a lowered chemotherapy toxicity in nonmalignant cholangiocytes, thus strengthening the interest for this natural sesquiterpene as a dual-acting chemosensitizing and chemopreventive agent

    Efficient chemotherapy of rat glioblastoma using Doxorubicin-loaded PLGA nanoparticles with different stabilizers

    Get PDF
    Background: Chemotherapy of glioblastoma is largely ineffective as the blood-brain barrier (BBB) prevents entry of most anticancer agents into the brain. For an efficient treatment of glioblastomas it is necessary to deliver anti-cancer drugs across the intact BBB. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with poloxamer 188 hold great promise as drug carriers for brain delivery after their intravenous injection. In the present study the anti-tumour efficacy of the surfactant-coated doxorubicin-loaded PLGA nanoparticles against rat glioblastoma 101/8 was investigated using histological and immunohistochemical methods. Methodology: The particles were prepared by a high-pressure solvent evaporation technique using 1% polyvinylalcohol (PLGA/PVA) or human serum albumin (PLGA/HSA) as stabilizers. Additionally, lecithin-containing PLGA/HSA particles (Dox-Lecithin-PLGA/HSA) were prepared. For evaluation of the antitumour efficacy the glioblastoma-bearing rats were treated intravenously with the doxorubicin-loaded nanoparticles coated with poloxamer 188 using the following treatment regimen: 3×2.5 mg/kg on day 2, 5 and 8 after tumour implantation; doxorubicin and poloxamer 188 solutions were used as controls. On day 18, the rats were sacrificed and the antitumour effect was determined by measurement of tumour size, necrotic areas, proliferation index, and expression of GFAP and VEGF as well as Isolectin B4, a marker for the vessel density. Conclusion: The results reveal a considerable anti-tumour effect of the doxorubicin-loaded nanoparticles. The overall best results were observed for Dox-Lecithin-PLGA/HSA. These data demonstrate that the poloxamer 188-coated PLGA nanoparticles enable delivery of doxorubicin across the blood-brain barrier in the therapeutically effective concentrations

    miR-200c sensitizes breast cancer cells to doxorubicin treatment by decreasing TrkB and Bmi1 expression.

    Get PDF
    Acquired resistance to classical chemotherapeutics is a major obstacle in cancer treatment. Doxorubicin is frequently used in breast cancer therapy either as single-agent or in combination with other drugs like docetaxel and cyclophosphamide. All these chemotherapies have in common that they are administered sequentially and often result in chemoresistance. Here, we mimicked this pulse therapy of breast cancer patients in an in vitro cell culture model, where the epithelial breast cancer cell line BT474 was sequentially treated with doxorubicin for several treatment cycles. In consequence, we obtained chemoresistant cells displaying a mesenchymal-like phenotype with decreased levels of miR-200c. To investigate the involvement of miR-200c in resistance formation, we inhibited and overexpressed miR-200c in different cell lines. Thereby, the cells were rendered more resistant or susceptible to doxorubicin treatment. Moreover, the receptor tyrosine kinase TrkB and the transcriptional repressor Bmi1 were identified as miR-200c targets mediating the drug resistance. Hence, we provide a mechanism of acquired resistance to doxorubicin that is caused by the loss of miR-200c. Along with this, our study demonstrates the complex network of microRNA mediated chemoresistance highlighting the challenges in cancer therapy and the importance of novel microRNA-modulating anticancer agents

    Prophylactic use of carvedilol to prevent ventricular dysfunction in patients with cancer treated with doxorubicin

    Get PDF
    Objective: Deterioration in ventricular function is often observed in patients treated with anthracyclines for cancer. There is a paucity of evidence on interventions that might provide cardio-protection. We investigated whether prophylactic use of carvedilol can prevent doxorubicin-induced cardiotoxicity and whether any observed effect is dose related. Methods: A prospective, randomized, double-blind study in patients treated with doxorubicin, comparing placebo (n = 38) with different doses of carvedilol [6.25 mg/day (n = 41), 12.5 mg/day (n = 38) or 25 mg/day (n = 37)]. The primary endpoint was the measured change in left ventricular ejection fraction (LVEF) from baseline to 6 months. Results: LVEF decreased from 62 ± 5% at baseline to 58 ± 7% at 6-months (p = 0.002) in patients assigned to placebo but no statistically significant changes were observed in any of the 3 carvedilol groups. At 6 months, only one of 116 patients (1%) assigned to carvedilol had an LVEF < 50% compared to four of the 38 assigned to placebo (11%), (p = 0.013). No significant differences were noted between carvedilol and placebo in terms of the development of diastolic dysfunction, clinically overt heart failure or death. Conclusions: Carvedilol might prevent deterioration in LVEF in cancer patients treated with doxorubicin. This effect may not be dose related within the studied range
    • …
    corecore