57 research outputs found

    Building Rules on Top of Ontologies for the Semantic Web with Inductive Logic Programming

    Full text link
    Building rules on top of ontologies is the ultimate goal of the logical layer of the Semantic Web. To this aim an ad-hoc mark-up language for this layer is currently under discussion. It is intended to follow the tradition of hybrid knowledge representation and reasoning systems such as AL\mathcal{AL}-log that integrates the description logic ALC\mathcal{ALC} and the function-free Horn clausal language \textsc{Datalog}. In this paper we consider the problem of automating the acquisition of these rules for the Semantic Web. We propose a general framework for rule induction that adopts the methodological apparatus of Inductive Logic Programming and relies on the expressive and deductive power of AL\mathcal{AL}-log. The framework is valid whatever the scope of induction (description vs. prediction) is. Yet, for illustrative purposes, we also discuss an instantiation of the framework which aims at description and turns out to be useful in Ontology Refinement. Keywords: Inductive Logic Programming, Hybrid Knowledge Representation and Reasoning Systems, Ontologies, Semantic Web. Note: To appear in Theory and Practice of Logic Programming (TPLP)Comment: 30 pages, 6 figure

    Efficient instance and hypothesis space revision in Meta-Interpretive Learning

    Get PDF
    Inductive Logic Programming (ILP) is a form of Machine Learning. The goal of ILP is to induce hypotheses, as logic programs, that generalise training examples. ILP is characterised by a high expressivity, generalisation ability and interpretability. Meta-Interpretive Learning (MIL) is a state-of-the-art sub-field of ILP. However, current MIL approaches have limited efficiency: the sample and learning complexity respectively are polynomial and exponential in the number of clauses. My thesis is that improvements over the sample and learning complexity can be achieved in MIL through instance and hypothesis space revision. Specifically, we investigate 1) methods that revise the instance space, 2) methods that revise the hypothesis space and 3) methods that revise both the instance and the hypothesis spaces for achieving more efficient MIL. First, we introduce a method for building training sets with active learning in Bayesian MIL. Instances are selected maximising the entropy. We demonstrate this method can reduce the sample complexity and supports efficient learning of agent strategies. Second, we introduce a new method for revising the MIL hypothesis space with predicate invention. Our method generates predicates bottom-up from the background knowledge related to the training examples. We demonstrate this method is complete and can reduce the learning and sample complexity. Finally, we introduce a new MIL system called MIGO for learning optimal two-player game strategies. MIGO learns from playing: its training sets are built from the sequence of actions it chooses. Moreover, MIGO revises its hypothesis space with Dependent Learning: it first solves simpler tasks and can reuse any learned solution for solving more complex tasks. We demonstrate MIGO significantly outperforms both classical and deep reinforcement learning. The methods presented in this thesis open exciting perspectives for efficiently learning theories with MIL in a wide range of applications including robotics, modelling of agent strategies and game playing.Open Acces

    Proceedings of the Workshop on Change of Representation and Problem Reformulation

    Get PDF
    The proceedings of the third Workshop on Change of representation and Problem Reformulation is presented. In contrast to the first two workshops, this workshop was focused on analytic or knowledge-based approaches, as opposed to statistical or empirical approaches called 'constructive induction'. The organizing committee believes that there is a potential for combining analytic and inductive approaches at a future date. However, it became apparent at the previous two workshops that the communities pursuing these different approaches are currently interested in largely non-overlapping issues. The constructive induction community has been holding its own workshops, principally in conjunction with the machine learning conference. While this workshop is more focused on analytic approaches, the organizing committee has made an effort to include more application domains. We have greatly expanded from the origins in the machine learning community. Participants in this workshop come from the full spectrum of AI application domains including planning, qualitative physics, software engineering, knowledge representation, and machine learning

    Logic-based machine learning using a bounded hypothesis space: the lattice structure, refinement operators and a genetic algorithm approach

    Get PDF
    Rich representation inherited from computational logic makes logic-based machine learning a competent method for application domains involving relational background knowledge and structured data. There is however a trade-off between the expressive power of the representation and the computational costs. Inductive Logic Programming (ILP) systems employ different kind of biases and heuristics to cope with the complexity of the search, which otherwise is intractable. Searching the hypothesis space bounded below by a bottom clause is the basis of several state-of-the-art ILP systems (e.g. Progol and Aleph). However, the structure of the search space and the properties of the refinement operators for theses systems have not been previously characterised. The contributions of this thesis can be summarised as follows: (i) characterising the properties, structure and morphisms of bounded subsumption lattice (ii) analysis of bounded refinement operators and stochastic refinement and (iii) implementation and empirical evaluation of stochastic search algorithms and in particular a Genetic Algorithm (GA) approach for bounded subsumption. In this thesis we introduce the concept of bounded subsumption and study the lattice and cover structure of bounded subsumption. We show the morphisms between the lattice of bounded subsumption, an atomic lattice and the lattice of partitions. We also show that ideal refinement operators exist for bounded subsumption and that, by contrast with general subsumption, efficient least and minimal generalisation operators can be designed for bounded subsumption. In this thesis we also show how refinement operators can be adapted for a stochastic search and give an analysis of refinement operators within the framework of stochastic refinement search. We also discuss genetic search for learning first-order clauses and describe a framework for genetic and stochastic refinement search for bounded subsumption. on. Finally, ILP algorithms and implementations which are based on this framework are described and evaluated.Open Acces

    OWL-Miner: Concept Induction in OWL Knowledge Bases

    Get PDF
    The Resource Description Framework (RDF) and Web Ontology Language (OWL) have been widely used in recent years, and automated methods for the analysis of data and knowledge directly within these formalisms are of current interest. Concept induction is a technique for discovering descriptions of data, such as inducing OWL class expressions to describe RDF data. These class expressions capture patterns in the data which can be used to characterise interesting clusters or to act as classifica- tion rules over unseen data. The semantics of OWL is underpinned by Description Logics (DLs), a family of expressive and decidable fragments of first-order logic. Recently, methods of concept induction which are well studied in the field of Inductive Logic Programming have been applied to the related formalism of DLs. These methods have been developed for a number of purposes including unsuper- vised clustering and supervised classification. Refinement-based search is a concept induction technique which structures the search space of DL concept/OWL class expressions and progressively generalises or specialises candidate concepts to cover example data as guided by quality criteria such as accuracy. However, the current state-of-the-art in this area is limited in that such methods: were not primarily de- signed to scale over large RDF/OWL knowledge bases; do not support class lan- guages as expressive as OWL2-DL; or, are limited to one purpose, such as learning OWL classes for integration into ontologies. Our work addresses these limitations by increasing the efficiency of these learning methods whilst permitting a concept language up to the expressivity of OWL2-DL classes. We describe methods which support both classification (predictive induction) and subgroup discovery (descrip- tive induction), which, in this context, are fundamentally related. We have implemented our methods as the system called OWL-Miner and show by evaluation that our methods outperform state-of-the-art systems for DL learning in both the quality of solutions found and the speed in which they are computed. Furthermore, we achieve the best ever ten-fold cross validation accuracy results on the long-standing benchmark problem of carcinogenesis. Finally, we present a case study on ongoing work in the application of OWL-Miner to a real-world problem directed at improving the efficiency of biological macromolecular crystallisation

    Comparison of Concept Learning Algorithms With Emphasis on Ontology Engineering for the Semantic Web

    Get PDF
    In the context of the Semantic Web, ontologies based on Description Logics are gaining more and more importance for knowledge representation on a large scale. While the need arises for high quality ontologies with large background knowledge to enable powerful machine reasoning, the acquisition of such knowledge is only advancing slowly, because of the lack of appropriate tools. Concept learning algorithms have made a great leap forward and can help to speed up knowledge acquisition in the form of induced concept descriptions. This work investigated whether concept learning algorithms have reached a level on which they can produce results that can be used in an ontology engineering process. Two learning algorithms (YinYang and DL-Learner) are investigated in detail and tested with benchmarks. A method that enables concept learning on large knowledge bases on a SPARQL endpoint is presented and the quality of learned concepts is evaluated in a real use case. A proposal is made to increase the complexity of learned concept descriptions by circumventing the Open World Assumption of Description Logics

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    Object-oriented data mining

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Usage of metadata

    Get PDF
    [no abstract
    • …
    corecore