1,665 research outputs found

    DSCALE_mod16: A Model for Disaggregating Microwave Satellite Soil Moisture with Land Surface Evapotranspiration Products and Gridded Meteorological Data

    Get PDF
    Improving the spatial resolution of microwave satellite soil moisture (SM) products is important for various applications. Most of the downscaling methods that fuse optical/thermal and microwave data rely on remotely sensed land surface temperature (LST) or LST-derived SM indexes (SMIs). However, these methods suffer from the problems of “cloud contamination”, “decomposing uncertainty”, and “decoupling effect”. This study presents a new downscaling method, referred to as DSCALE_mod16, without using LST and LST-derived SMIs. This model combines MODIS ET products and a gridded meteorological data set to obtain Land surface Evaporative Efficiency (LEE) as the main downscaling factor. A cosine-square form of downscaling function was adopted to represent the quantitative relationship between LEE and SM. Taking the central part of the United States as the case study area, we downscaled SMAP (Soil Moisture Active and Passive) SM products with an original resolution of 36km to a resolution of 500m. The study period spans more than three years from 2015 to 2018. In situ SM measurements from three sparse networks and three core validation sites (CVS) were used to evaluate the downscaling model. The evaluation results indicate that the downscaled SM values maintain the spatial dynamic range of original SM data while providing more spatial details. Moreover, the moisture mass is conserved during the downscaling process. The downscaled SM values have a good agreement with in situ SM measurements. The unbiased root-mean-square errors (ubRMSEs) of downscaled SM values is 0.035 m3/m3 at Fort Cobb, 0.026 m3/m3 at Little Washita, and 0.055 m3/m3 at South Fork, which are comparable to ubRMSEs of original SM estimates at these three CVS

    Désagrégation de l'humidité du sol issue des produits satellitaires micro-ondes passives et exploration de son utilisation pour l'amélioration de la modélisation et la prévision hydrologique

    Get PDF
    De plus en plus de produits satellitaires en micro-ondes passives sont disponibles. Cependant, leur large résolution spatiale (25-50 km) n’en font pas un outil adéquat pour des applications hydrologiques à une échelle locale telles que la modélisation et la prévision hydrologiques. Dans de nombreuses études, une désagrégation d’échelle de l’humidité du sol des produits satellites micro-ondes est faite puis validée avec des mesures in-situ. Toutefois, l’utilisation de ces données issues d’une désagrégation d’échelle n’a pas encore été pleinement étudiée pour des applications en hydrologie. Ainsi, l’objectif de cette thèse est de proposer une méthode de désagrégation d’échelle de l’humidité du sol issue de données satellitaires en micro-ondes passives (Satellite Passive Microwave Active and Passive - SMAP) à différentes résolutions spatiales afin d’évaluer leur apport sur l’amélioration potentielle des modélisations et prévisions hydrologiques. À partir d’un modèle de forêt aléatoire, une désagrégation d’échelle de l’humidité du sol de SMAP l’amène de 36-km de résolution initialement à des produits finaux à 9-, 3- et 1-km de résolution. Les prédicteurs utilisés sont à haute résolution spatiale et de sources différentes telles que Sentinel-1A, MODIS et SRTM. L'humidité du sol issue de cette désagrégation d’échelle est ensuite assimilée dans un modèle hydrologique distribué à base physique pour tenter d’améliorer les sorties de débit. Ces expériences sont menées sur les bassins versants des rivières Susquehanna (de grande taille) et Upper-Susquehanna (en comparaison de petite taille), tous deux situés aux États-Unis. De plus, le modèle assimile aussi des données d’humidité du sol en profondeur issue d’une extrapolation verticale des données SMAP. Par ailleurs, les données d’humidité du sol SMAP et les mesures in-situ sont combinées par la technique de fusion conditionnelle. Ce produit de fusion SMAP/in-situ est assimilé dans le modèle hydrologique pour tenter d’améliorer la prévision hydrologique sur le bassin versant Au Saumon situé au Québec. Les résultats montrent que l'utilisation de l’humidité du sol à fine résolution spatiale issue de la désagrégation d’échelle améliore la représentation de la variabilité spatiale de l’humidité du sol. En effet, le produit à 1- km de résolution fournit plus de détails que les produits à 3- et 9-km ou que le produit SMAP de base à 36-km de résolution. De même, l’utilisation du produit de fusion SMAP/ in-situ améliore la qualité et la représentation spatiale de l’humidité du sol. Sur le bassin versant Susquehanna, la modélisation hydrologique s’améliore avec l’assimilation du produit de désagrégation d’échelle à 9-km, sans avoir recours à des résolutions plus fines. En revanche, sur le bassin versant Upper-Susquehanna, c’est le produit avec la résolution spatiale la plus fine à 1- km qui offre les meilleurs résultats de modélisation hydrologique. L’assimilation de l’humidité du sol en profondeur issue de l’extrapolation verticale des données SMAP n’améliore que peu la qualité du modèle hydrologique. Par contre, l’assimilation du produit de fusion SMAP/in-situ sur le bassin versant Au Saumon améliore la qualité de la prévision du débit, même si celle-ci n’est pas très significative.Abstract: The availability of satellite passive microwave soil moisture is increasing, yet its spatial resolution (i.e., 25-50 km) is too coarse to use for local scale hydrological applications such as streamflow simulation and forecasting. Many studies have attempted to downscale satellite passive microwave soil moisture products for their validation with in-situ soil moisture measurements. However, their use for hydrological applications has not yet been fully explored. Thus, the objective of this thesis is to downscale the satellite passive microwave soil moisture (i.e., Satellite Microwave Active and Passive - SMAP) to a range of spatial resolutions and explore its value in improving streamflow simulation and forecasting. The random forest machine learning technique was used to downscale the SMAP soil moisture from 36-km to 9-, 3- and 1-km spatial resolutions. A combination of host of high-resolution predictors derived from different sources including Sentinel-1A, MODIS and SRTM were used for downscaling. The downscaled SMAP soil moisture was then assimilated into a physically-based distributed hydrological model for improving streamflow simulation for Susquehanna (larger in size) and Upper Susquehanna (relatively smaller in size) watersheds, located in the United States. In addition, the vertically extrapolated SMAP soil moisture was assimilated into the model. On the other hand, the SMAP and in-situ soil moisture were merged using the conditional merging technique and the merged SMAP/in-situ soil moisture was then assimilated into the model to improve streamflow forecast over the au Saumon watershed. The results show that the downscaling improved the spatial variability of soil moisture. Indeed, the 1-km downscaled SMAP soil moisture presented a higher spatial detail of soil moisture than the 3-, 9- or original resolution (36-km) SMAP product. Similarly, the merging of SMAP and in-situ soil moisture improved the accuracy as well as spatial representation soil moisture. Interestingly, the assimilation of the 9-km downscaled SMAP soil moisture significantly improved the accuracy of streamflow simulation for the Susquehanna watershed without the need of going to higher spatial resolution, whereas for the Upper Susquehanna watershed the 1-km downscaled SMAP showed better results than the coarser resolutions. The assimilation of vertically extrapolated SMAP soil moisture only slightly further improved the accuracy of the streamflow simulation. On the other hand, the assimilation of merged SMAP/in-situ soil moisture for the au Saumon watershed improved the accuracy of streamflow forecast, yet the improvement was not that significant. Overall, this study demonstrated the potential of satellite passive microwave soil moisture for streamflow simulation and forecasting

    Multi-temporal evaluation of soil moisture and land surface temperature dynamics using in situ and satellite observations

    Get PDF
    Soil moisture (SM) is an important component of the Earth’s surface water balance and by extension the energy balance, regulating the land surface temperature (LST) and evapotranspiration (ET). Nowadays, there are two missions dedicated to monitoring the Earth’s surface SM using L-band radiometers: ESA’s Soil Moisture and Ocean Salinity (SMOS) and NASA’s Soil Moisture Active Passive (SMAP). LST is remotely sensed using thermal infrared (TIR) sensors on-board satellites, such as NASA’s Terra/Aqua MODIS or ESA & EUMETSAT’s MSG SEVIRI. This study provides an assessment of SM and LST dynamics at daily and seasonal scales, using 4 years (2011–2014) of in situ and satellite observations over the central part of the river Duero basin in Spain. Specifically, the agreement of instantaneous SM with a variety of LST-derived parameters is analyzed to better understand the fundamental link of the SM–LST relationship through ET and thermal inertia. Ground-based SM and LST measurements from the REMEDHUS network are compared to SMOS SM and MODIS LST spaceborne observations. ET is obtained from the HidroMORE regional hydrological model. At the daily scale, a strong anticorrelation is observed between in situ SM and maximum LST (R ˜ -0.6 to -0.8), and between SMOS SM and MODIS LST Terra/Aqua day (R ˜ - 0.7). At the seasonal scale, results show a stronger anticorrelation in autumn, spring and summer (in situ R ˜ -0.5 to -0.7; satellite R ˜ -0.4 to -0.7) indicating SM–LST coupling, than in winter (in situ R ˜ +0.3; satellite R ˜ -0.3) indicating SM–LST decoupling. These different behaviors evidence changes from water-limited to energy-limited moisture flux across seasons, which are confirmed by the observed ET evolution. In water-limited periods, SM is extracted from the soil through ET until critical SM is reached. A method to estimate the soil critical SM is proposed. For REMEDHUS, the critical SM is estimated to be ~0.12 m3/m3 , stable over the study period and consistent between in situ and satellite observations. A better understanding of the SM–LST link could not only help improving the representation of LST in current hydrological and climate prediction models, but also refining SM retrieval or microwave-optical disaggregation algorithms, related to ET and vegetation status.Peer ReviewedPostprint (published version

    Temporal stability of soil moisture and radar backscatter observed by the advanced Synthetic Aperture Radar (ASAR)

    Get PDF
    The high spatio-temporal variability of soil moisture is the result of atmospheric forcing and redistribution processes related to terrain, soil, and vegetation characteristics. Despite this high variability, many field studies have shown that in the temporal domain soil moisture measured at specific locations is correlated to the mean soil moisture content over an area. Since the measurements taken by Synthetic Aperture Radar (SAR) instruments are very sensitive to soil moisture it is hypothesized that the temporally stable soil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT Advanced Synthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located in the Duero basin, Spain. It is found that a time-invariant linear relationship is well suited for relating local scale (pixel) and regional scale (50 km) backscatter. The observed linear model coefficients can be estimated by considering the scattering properties of the terrain and vegetation and the soil moisture scaling properties. For both linear model coefficients, the relative error between observed and modelled values is less than 5 % and the coefficient of determination (R-2) is 86 %. The results are of relevance for interpreting and downscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT) and passive (SMOS, AMSR-E) instruments

    Urban surface temperature time series estimation at the local scale by spatial-spectral unmixing of satellite observations

    Get PDF
    The study of urban climate requires frequent and accurate monitoring of land surface temperature (LST), at the local scale. Since currently, no space-borne sensor provides frequent thermal infrared imagery at high spatial resolution, the scientific community has focused on synergistic methods for retrieving LST that can be suitable for urban studies. Synergistic methods that combine the spatial structure of visible and near-infrared observations with the more frequent, but low-resolution surface temperature patterns derived by thermal infrared imagery provide excellent means for obtaining frequent LST estimates at the local scale in cities. In this study, a new approach based on spatial-spectral unmixing techniques was developed for improving the spatial resolution of thermal infrared observations and the subsequent LST estimation. The method was applied to an urban area in Crete, Greece, for the time period of one year. The results were evaluated against independent high-resolution LST datasets and found to be very promising, with RMSE less than 2 K in all cases. The developed approach has therefore a high potential to be operationally used in the near future, exploiting the Copernicus Sentinel (2 and 3) observations, to provide high spatio-temporal resolution LST estimates in cities
    • …
    corecore