3,154 research outputs found

    Downlink scheduling in CDMA data networks

    Get PDF
    We identify optimality properties for scheduling downlink transmissions to data users in CDMA networks. For arbitrary-topology networks, we show that under certain idealizing assumptions it is optimal for a base station to transmit to only one data user at a time. Moreover, for data-only networks, we prove that a base station, when on, should transmit at maximum power for optimality. We use these two properties to obtain a mathematical programming formulation for determining the optimal transmission schedule in linear data-only networks, with time allocations playing the role of decision variables. The optimality conditions imply that there exist (i) subsets of outer users on either side of the cell that should be served when only the neighboring base station on the opposite side is on; (ii) a subset of inner users in the center of the cell that should be served when both neighbors are on; (iii) a subset of users in the intermediate regions that should receive transmissions when both neighbors are off. Exploiting these structural properties, we derive a simple search algorithm for finding the optimal transmission schedule in symmetric scenarios. Numerical experiments illustrate that scheduling achieves significant capacity gains over conventional CDMA

    Genetically Enhanced Performance of a UTRA-like Time-Division Duplex CDMA Network

    No full text
    In this contribution a Dynamic Channel Allocation (DCA) algorithm is developed, which minimizes the amount of Multi-User Interference (MUI) experienced at the Base Stations (BSs) by employing Genetic Algorithms (GAs). A GA is utilized for finding a suboptimum, but highly beneficial Uplink (UL) or Downlink (DL) Timeslot (TS) allocation for improving the achievable performance of the third generation UTRA system’s Time Division Duplex (TDD) mode. It is demonstrated that a GA-assisted UL/DL timeslot scheduling scheme may avoid the severe BS to BS inter-cell interference potentially inflicted by the UTRA TDD CDMA air interface owing to allowing all TSs to be used both in the UL and D

    Issues on packet transmissioin strategies in a TDD-TD/CDMA scenario

    Get PDF
    This paper presents a packet transmission scheme that deals with the problems of a TDD CDMA scenario with different levels of frame structure asymmetry in adjacent base stations by distributing the users in the slots depending on their Time Advance. A multiple access protocol and a scheduling algorithm are also proposed to provide a certain degree of Quality of Service.Peer ReviewedPostprint (published version

    On soft/hard handoff for packet data services in cellular CDMA mobiles systems

    Get PDF
    Benefits of macrodiversity operation for packet data services in third generation mobile systems are not obvious. Retransmission procedures to enhance link performance and higher downlink bandwidth requirements could question macrodiversity usage. This paper describes a simple methodology to compare soft and hard handoff performance in terms of transmission delay for packet data services. The handover procedures are based exclusively on power criteria and hysteresis margins.Peer ReviewedPostprint (published version

    A combined polling and ISMA-DS/CDMA protocol to provide QoS in packet mobile communications systems

    Get PDF
    This paper presents a new mechanism that combines the flexibility of an access protocol such as ISMA-DS/CDMA with the ability of a polling mechanism to provide a specific bound for the access delay. This protocol is proposed for a packet transmission mobile communication system together with a scheduling algorithm that arranges the different transmissions depending on the quality of service required by the set of considered services.Peer ReviewedPostprint (published version

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable pĂșblic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version

    Throughput Optimal Scheduling with Dynamic Channel Feedback

    Full text link
    It is well known that opportunistic scheduling algorithms are throughput optimal under full knowledge of channel and network conditions. However, these algorithms achieve a hypothetical achievable rate region which does not take into account the overhead associated with channel probing and feedback required to obtain the full channel state information at every slot. We adopt a channel probing model where ÎČ\beta fraction of time slot is consumed for acquiring the channel state information (CSI) of a single channel. In this work, we design a joint scheduling and channel probing algorithm named SDF by considering the overhead of obtaining the channel state information. We first analytically prove SDF algorithm can support 1+Ï”1+\epsilon fraction of of the full rate region achieved when all users are probed where Ï”\epsilon depends on the expected number of users which are not probed. Then, for homogenous channel, we show that when the number of users in the network is greater than 3, Ï”>0\epsilon > 0, i.e., we guarantee to expand the rate region. In addition, for heterogenous channels, we prove the conditions under which SDF guarantees to increase the rate region. We also demonstrate numerically in a realistic simulation setting that this rate region can be achieved by probing only less than 50% of all channels in a CDMA based cellular network utilizing high data rate protocol under normal channel conditions.Comment: submitte
    • 

    corecore