1,360 research outputs found

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    TD-SCDMA Relay Networks

    Get PDF
    PhDWhen this research was started, TD-SCDMA (Time Division Synchronous Code Division Multiple Access) was still in the research/ development phase, but now, at the time of writing this thesis, it is in commercial use in 10 large cities in China including Beijing and Shang Hai. In all of these cities HSDPA is enabled. The roll-out of the commercial deployment is progressing fast with installations in another 28 cities being underway now. However, during the pre-commercial TD-SCDM trail in China, which started from year 2006, some interference problems have been noticed especially in the network planning and initialization phases. Interference is always an issue in any network and the goal of the work reported in this thesis is to improve network coverage and capacity in the presence of interference. Based on an analysis of TD-SCDMA issues and how network interference arises, this thesis proposes two enhancements to the network in addition to the standard N-frequency technique. These are (i) the introduction of the concentric circle cell concept and (ii) the addition of a relay network that makes use of other users at the cell boundary. This overall approach not only optimizes the resilience to interference but increases the network coverage without adding more Node Bs. Based on the cell planning parameters from the research, TD-SCDMA HSDPA services in dense urban area and non-HSDPA services in rural areas were simulated to investigate the network performance impact after introducing the relay network into a TD-SCDMA network. The results for HSDPA applications show significant improvement in the TDSCDMA relay network both for network capacity and network interference aspects compared to standard TD-SCDMA networks. The results for non- HSDPA service show that although the network capacity has not changed after adding in the relay network (due to the code limitation in TD-SCDMA), the TD-SCDMA relay network has better interference performance and greater coverage

    Massive MIMO for Next Generation Wireless Systems

    Full text link
    Multi-user Multiple-Input Multiple-Output (MIMO) offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned with roughly equal numbers of service-antennas and terminals and frequency division duplex operation, is not a scalable technology. Massive MIMO (also known as "Large-Scale Antenna Systems", "Very Large MIMO", "Hyper MIMO", "Full-Dimension MIMO" & "ARGOS") makes a clean break with current practice through the use of a large excess of service-antennas over active terminals and time division duplex operation. Extra antennas help by focusing energy into ever-smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include the extensive use of inexpensive low-power components, reduced latency, simplification of the media access control (MAC) layer, and robustness to intentional jamming. The anticipated throughput depend on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly-joined terminals, the exploitation of extra degrees of freedom provided by the excess of service-antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This paper presents an overview of the massive MIMO concept and contemporary research.Comment: Final manuscript, to appear in IEEE Communications Magazin

    Analytical Model of Proportional Fair Scheduling in Interference-limited OFDMA/LTE Networks

    Full text link
    Various system tasks like interference coordination, handover decisions, admission control etc. in upcoming cellular networks require precise mid-term (spanning over a few seconds) performance models. Due to channel-dependent scheduling at the base station, these performance models are not simple to obtain. Furthermore, upcoming cellular systems will be interference-limited, hence, the way interference is modeled is crucial for the accuracy. In this paper we present an analytical model for the SINR distribution of the \textit{scheduled} subcarriers of an OFDMA system with proportional fair scheduling. The model takes the precise SINR distribution into account. We furthermore refine our model with respect to uniform modulation and coding, as applied in LTE networks. The derived models are validated by means of simulations. In additon, we show that our models are approximate estimators for the performance of rate-based proportional fair scheduling, while they outperform some simpler prediction models from related work significantly.Comment: 7 pages, 6 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore