1,406 research outputs found

    Performance analysis of carrier aggregation for various mobile network implementations scenario based on spectrum allocated

    Full text link
    Carrier Aggregation (CA) is one of the Long Term Evolution Advanced (LTE-A) features that allow mobile network operators (MNO) to combine multiple component carriers (CCs) across the available spectrum to create a wider bandwidth channel for increasing the network data throughput and overall capacity. CA has a potential to enhance data rates and network performance in the downlink, uplink, or both, and it can support aggregation of frequency division duplexing (FDD) as well as time division duplexing (TDD). The technique enables the MNO to exploit fragmented spectrum allocations and can be utilized to aggregate licensed and unlicensed carrier spectrum as well. This paper analyzes the performance gains and complexity level that arises from the aggregation of three inter-band component carriers (3CC) as compared to the aggregation of 2CC using a Vienna LTE System Level simulator. The results show a considerable growth in the average cell throughput when 3CC aggregations are implemented over the 2CC aggregation, at the expense of reduction in the fairness index. The reduction in the fairness index implies that, the scheduler has an increased task in resource allocations due to the added component carrier. Compensating for such decrease in the fairness index could result into scheduler design complexity. The proposed scheme can be adopted in combining various component carriers, to increase the bandwidth and hence the data rates.Comment: 13 page

    Resource Allocation for Licensed/Unlicensed Carrier Aggregation MIMO Systems

    Get PDF
    In this paper a novel Carrier Aggregation (CA) scheme is proposed for downlink MIMO LTE-A Systems. The proposed approach achieves increased transmission rates by establishing the communication links via both licensed and unlicensed bands without generating or experiencing interference to/from the users of the latter bands. To that end, a rate optimization problem is defined and solved subject to the previous zero interference constraints, a total power constraint and a maximum number of aggregated bands constraint. It turns out that the previous problem is a Mixed Integer Non Linear Programming (MINLP) one that requires an exhaustive search procedure in order to be solved. To tackle this, an optimal low complexity method is proposed based on the Lagrange dual decomposition. The performance of the original (MINLP) and the low-complexity proposed techniques is verified via indicative simulation

    A Novel Beamformed Control Channel Design for LTE with Full Dimension-MIMO

    Get PDF
    The Full Dimension-MIMO (FD-MIMO) technology is capable of achieving huge improvements in network throughput with simultaneous connectivity of a large number of mobile wireless devices, unmanned aerial vehicles, and the Internet of Things (IoT). In FD-MIMO, with a large number of antennae at the base station and the ability to perform beamforming, the capacity of the physical downlink shared channel (PDSCH) has increased a lot. However, the current specifications of the 3rd Generation Partnership Project (3GPP) does not allow the base station to perform beamforming techniques for the physical downlink control channel (PDCCH), and hence, PDCCH has neither the capacity nor the coverage of PDSCH. Therefore, PDCCH capacity will still limit the performance of a network as it dictates the number of users that can be scheduled at a given time instant. In Release 11, 3GPP introduced enhanced PDCCH (EPDCCH) to increase the PDCCH capacity at the cost of sacrificing the PDSCH resources. The problem of enhancing the PDCCH capacity within the available control channel resources has not been addressed yet in the literature. Hence, in this paper, we propose a novel beamformed PDCCH (BF-PDCCH) design which is aligned to the 3GPP specifications and requires simple software changes at the base station. We rely on the sounding reference signals transmitted in the uplink to decide the best beam for a user and ingeniously schedule the users in PDCCH. We perform system level simulations to evaluate the performance of the proposed design and show that the proposed BF-PDCCH achieves larger network throughput when compared with the current state of art algorithms, PDCCH and EPDCCH schemes

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Integration of Carrier Aggregation and Dual Connectivity for the ns-3 mmWave Module

    Full text link
    Thanks to the wide availability of bandwidth, the millimeter wave (mmWave) frequencies will provide very high data rates to mobile users in next generation 5G cellular networks. However, mmWave links suffer from high isotropic pathloss and blockage from common materials, and are subject to an intermittent channel quality. Therefore, protocols and solutions at different layers in the cellular network and the TCP/IP protocol stack have been proposed and studied. A valuable tool for the end-to-end performance analysis of mmWave cellular networks is the ns-3 mmWave module, which already models in detail the channel, Physical (PHY) and Medium Access Control (MAC) layers, and extends the Long Term Evolution (LTE) stack for the higher layers. In this paper we present an implementation for the ns-3 mmWave module of multi connectivity techniques for 3GPP New Radio (NR) at mmWave frequencies, namely Carrier Aggregation (CA) and Dual Connectivity (DC), and discuss how they can be integrated to increase the functionalities offered by the ns-3 mmWave module.Comment: 9 pages, 7 figures, submitted to the Workshop on ns-3 (WNS3) 201
    corecore